

Lecture 11: Al Accelerator Introduction and CNN Accelerators

Notes

- First round of team meeting on Dec 1 and Dec 2.
- Extra-credit quiz today.

Recap

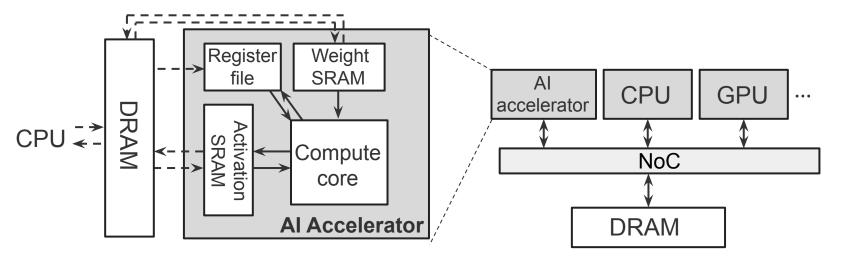
- Federated Learning
- Machine Learning Compiler
- Machine Learning System

Topics

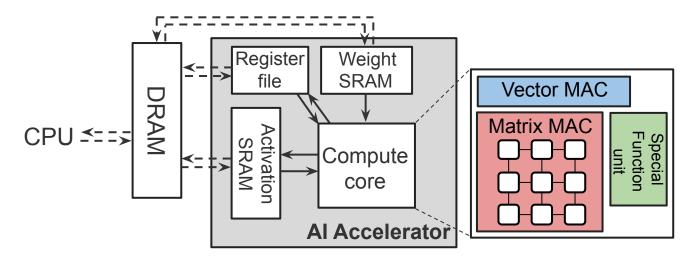
- Hardware accelerator: Overview
- Convolutional operation conversion
- Systolic array
- Convolutional Neural Network System
- Popular accelerator design

AI Accelerator

• The Al accelerator can execute part of the machine code that is related to the Al workload.

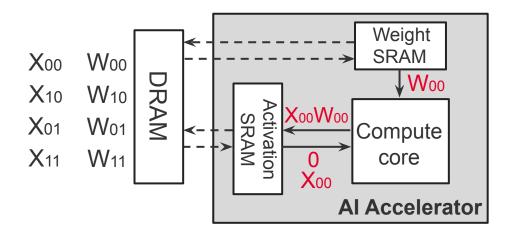


AI Accelerator



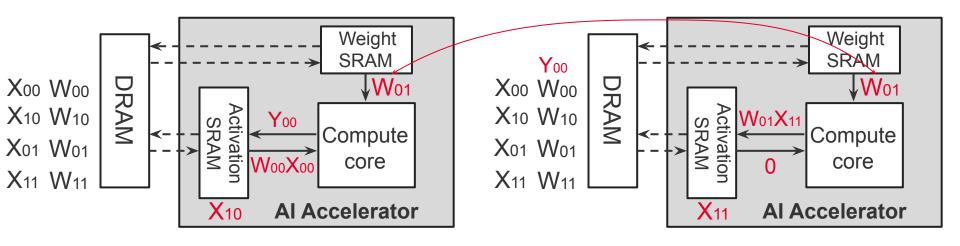
- The compute core consists of Multiply and accumulator (MAC) engine for 2D matrix multiplication.
- It also contains vector multiplier MAC as well as special function unit.

AI Accelerator



$$\begin{bmatrix} W_{00} & W_{01} \\ W_{10} & W_{11} \end{bmatrix} \times \begin{bmatrix} X_{00} & X_{01} \\ X_{10} & X_{11} \end{bmatrix} = \begin{bmatrix} W_{00}X_{00} + W_{01}X_{10} & W_{00}X_{01} + W_{01}X_{11} \\ W_{10}X_{00} + W_{11}X_{10} & W_{10}X_{01} + W_{11}X_{11} \end{bmatrix} = \begin{bmatrix} Y_{00} & Y_{01} \\ Y_{10} & Y_{11} \end{bmatrix}$$

Memory Access Reduction

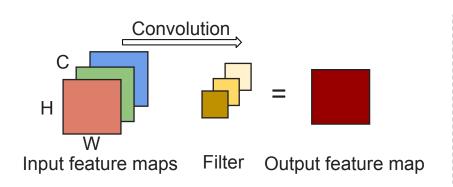


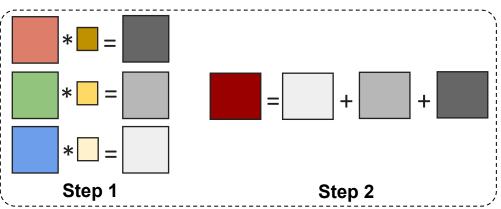
• The computation and memory access pattern can be changed to minimize the computational cost without impacting the results.

Topics

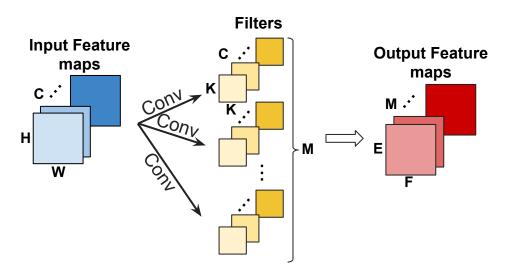
- Hardware accelerator: Overview
- Convolutional operation conversion
- Systolic array
- Convolutional Neural Network System
- Popular accelerator design

Convolutional Layers





Core building block of a CNN, it is also the most computational intensive layer.



- Number of MACs: $M \times K \times K \times C \times E \times F$
- Storage cost:32×(M×C×K×K+C×H×W+M×E×F)

C: number of input channels

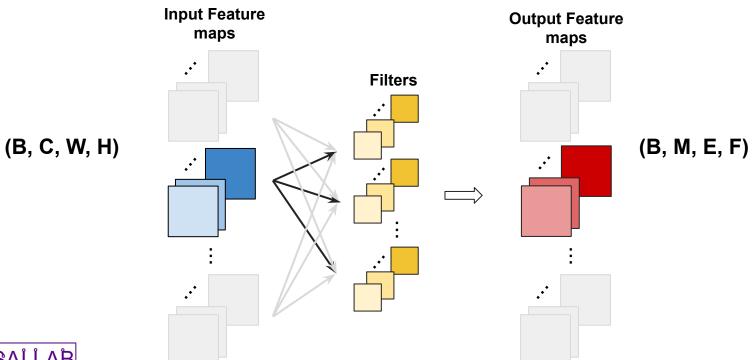
H,W: size of the input feature maps

M: number of weight filters

K: weight kernel size

E,F: size of the output feature maps

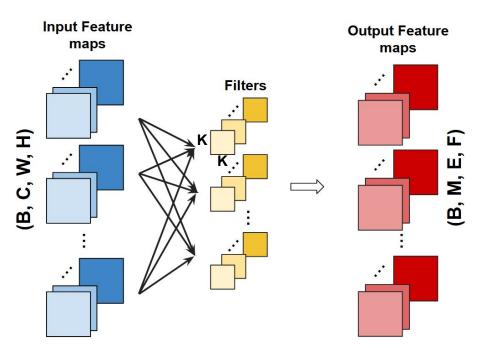
Input Feature Output Feature maps maps **Filters** (B, C, W, H) (B, M, E, F)



(B, C, W, H)

Input Feature Output Feature maps maps **Filters** (B, M, E, F)

Computational Cost: Standard Convolution



- Number of MACs: B×M×K×K×C×E×F
- Storage cost: 32×(M×C×K×K+B×C×H×W+B×M×E×F)

B: batch size

C: number of input channels

H,W: size of the input feature maps

M: number of weight filters

K: weight kernel size

E,F: size of the output feature maps

- We need to iterate over seven dimensions:
 - o B, M, C, E, F, K(kernel width), K (kernel height)

Computational Dataflow for CNN

```
for b = 1 to B

for m = 1 to M

for c = 1 to C

for w = 1 to E

for h = 1 to F

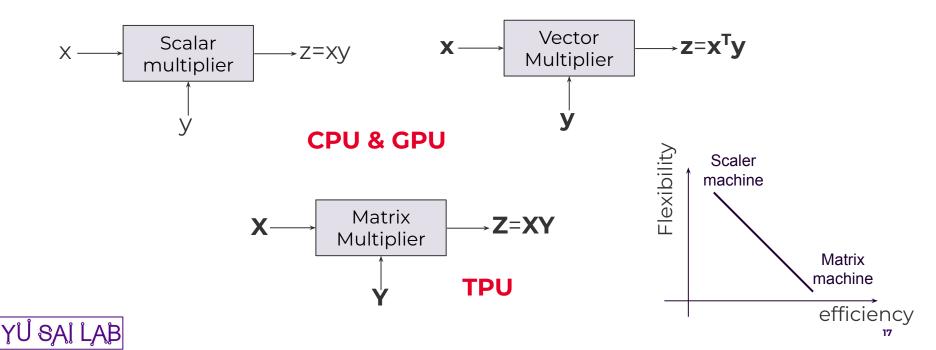
for k<sub>1</sub> = 1 to K

for k<sub>2</sub> = 1 to K

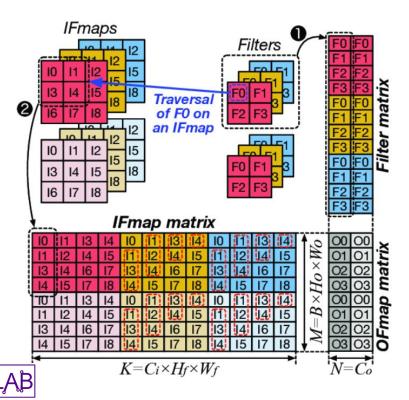
out[b][m][e][f] += in[b][c][e+k<sub>1</sub>-(K+1)/2][f+k<sub>2</sub>-(K+1)/2] * filter[m][c][k<sub>1</sub>][k<sub>2</sub>];
```

- This simple loop nest can be transformed in numerous ways to capture different reuse patterns of the activations and weights and to map the computation to a hardware accelerator implementation.
- A CNN's dataflow defines how the loops are ordered, partitioned, and parallelized
- We can use the scaler machine to compute the results of CNN using this for loop

Computational Dataflow for CNN

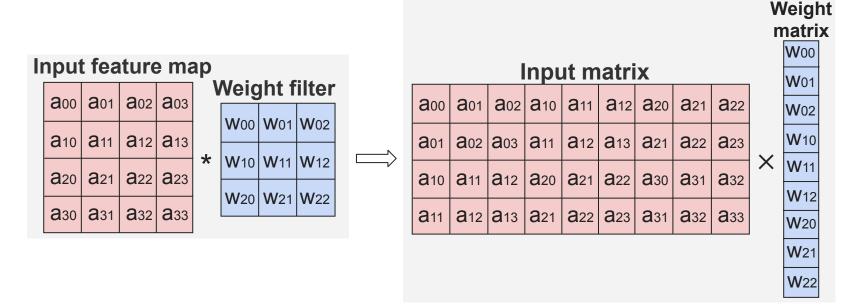


How to Convert to Matrix Multiplication?

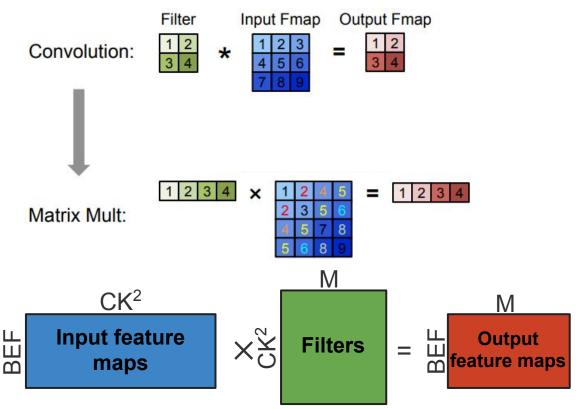


 A standard Convolutional operation can be converted to 2D matrix multiplication using Im2Col operations.

How to Convert to Matrix Multiplication?



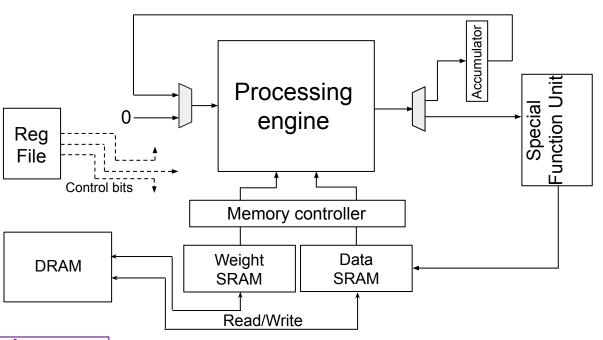
How to Convert to Matrix Multiplication?



Topics

- Hardware accelerator: Overview
- Convolutional operation conversion
- Systolic array
- Convolutional Neural Network System
- Popular accelerator design

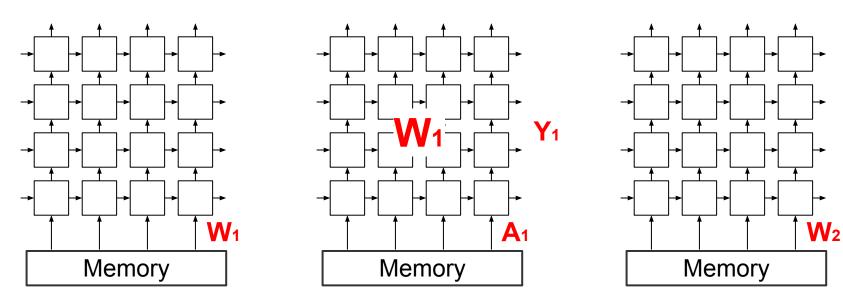
Hardware Architectures for DNN Processing



Major building blocks:

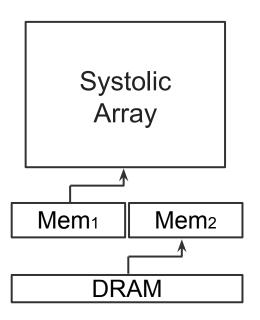
- Processing engine
- Accumulator
- Reg file
- Special function unit
- Memory subsystem
 - Weight SRAM
 - Data SRAM
 - DRAM

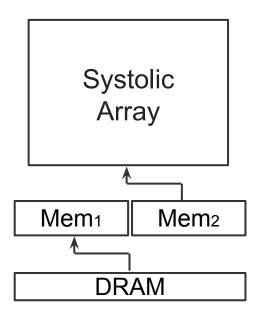
Computing Paradigms



Spatial architecture can achieve great reuse of the extracted content, leading to a reduced memory access cost.

Double Buffering

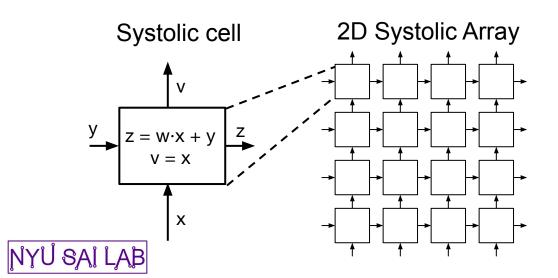




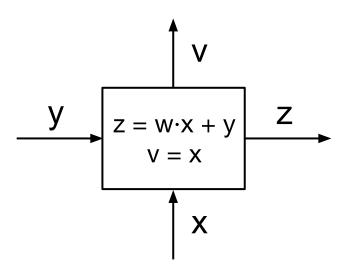
- Double buffering in hardware design is a technique used to improve the efficiency and performance of data processing, especially in systems that require smooth and continuous data transfer.
- The idea is to overlap the data production and consumption processes to avoid delays.

Systolic Array (Weight Stationary Version)

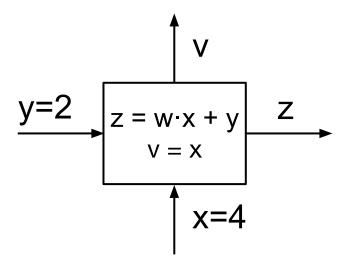
- Kung and Leiserson, "Systolic Arrays for VLSI," 1978 and Kung, "Why systolic architectures?' 1982
- 2D grid of multiplier-accumulators (MACs) for matrix multiplication
- Used by Google TPU for deep learning (2017), etc

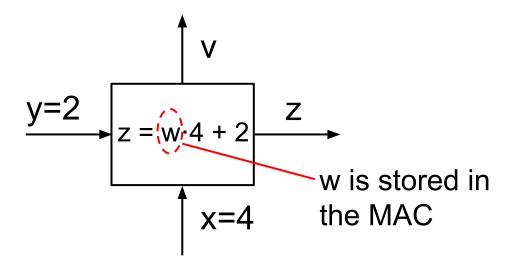


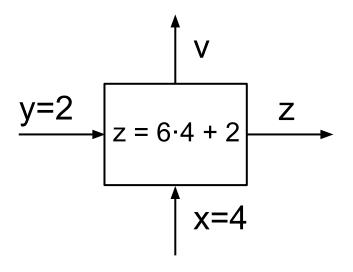
TPU (Google)

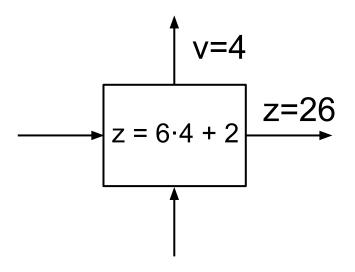


- Takes data (x and y) as input
- w stays in the systolic cell
- Performs a multiply-accumulate operation

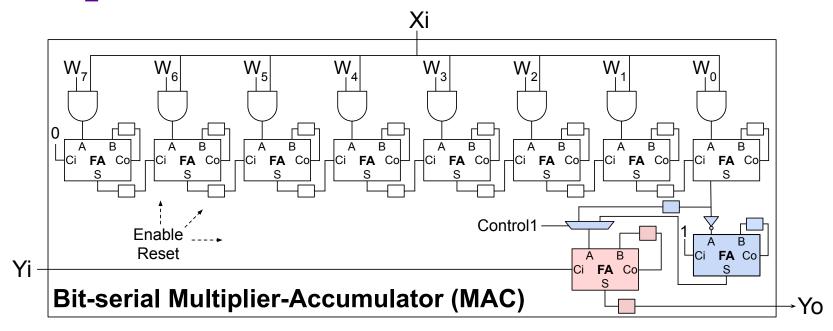




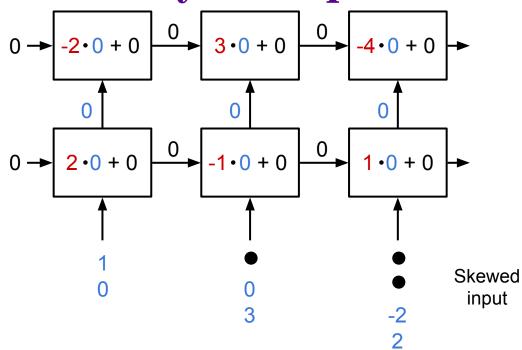




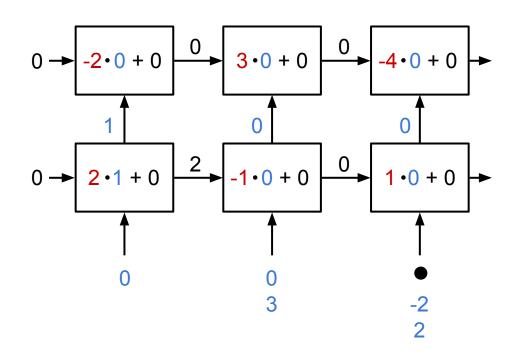
Multiplier Accumulator



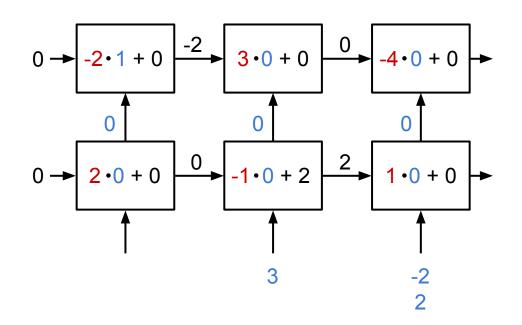
Weight Data Result Matrix Matrix
$$\begin{bmatrix} 2 & -1 & 1 \\ -2 & 3 & -4 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ 0 & 3 \\ -2 & 2 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 6 & 1 \end{bmatrix}$$



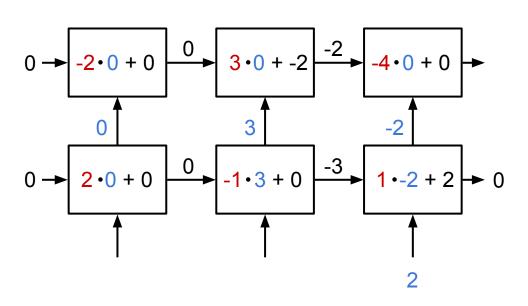
Weight Data Result Matrix Matrix
$$\begin{bmatrix} 2 & -1 & 1 \\ -2 & 3 & -4 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ 0 & 3 \\ -2 & 2 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 6 & 1 \end{bmatrix}$$



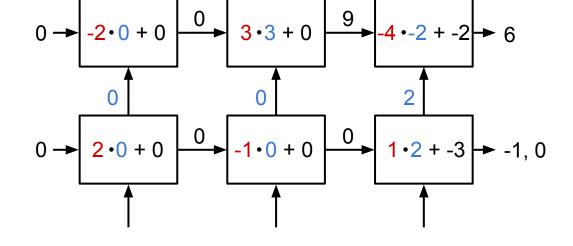
Weight Data Result Matrix Matrix
$$\begin{bmatrix} 2 & -1 & 1 \\ -2 & 3 & -4 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ 0 & 3 \\ -2 & 2 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 6 & 1 \end{bmatrix}$$



Weight Data Result Matrix Matrix
$$\begin{bmatrix} 2 & -1 & 1 \\ -2 & 3 & -4 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ 0 & 3 \\ -2 & 2 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 6 & 1 \end{bmatrix}$$



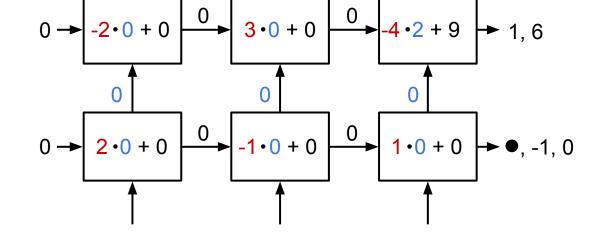
Weight Data Result Matrix Matrix
$$\begin{bmatrix} 2 & -1 & 1 \\ -2 & 3 & -4 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ 0 & 3 \\ -2 & 2 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 6 & 1 \end{bmatrix}$$



Visualizing Systolic Array Multiplication

Weight Data Result Matrix Matrix
$$\begin{bmatrix} 2 & -1 & 1 \\ -2 & 3 & -4 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ 0 & 3 \\ -2 & 2 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 6 & 1 \end{bmatrix}$$

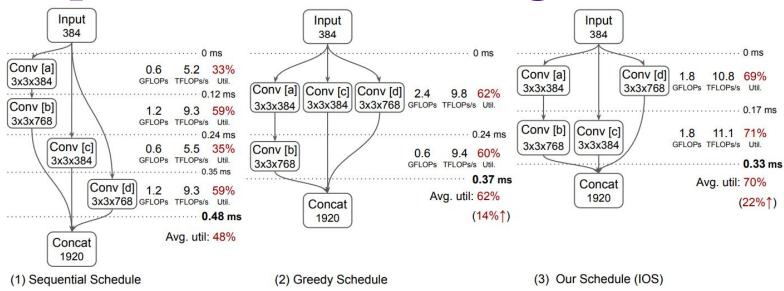
Weights in red are preloaded into the systolic array



Topics

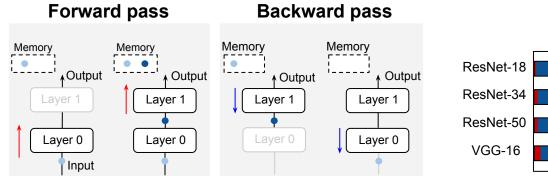
- Hardware accelerator: Overview
- Convolutional operation conversion
- Systolic array
- Convolutional Neural Network System
- Popular accelerator design

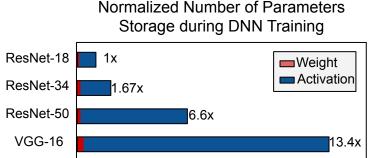
Computational Scheduling



- The branchy CNN can be scheduling and computed in a much higher efficiency.
- Two convolutional operations can be combined to achieve less memory cost.

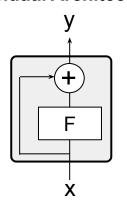
Ding, Yaoyao, et al. "los: Inter-operator scheduler for cnn acceleration." *Proceedings of Machine Learning and Systems* 3 (2021): 167-180.



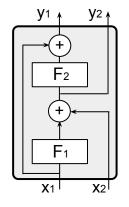


- The memory footprint grows proportional with the layer depth.
- On top of this, small edge devices typically have limited on-chip storage, leading to frequent and costly accesses to off-chip memories.

Residual Architecture



Reversible Architecture



Forward pass:

$$y_2 = F_1(x_1) + x_2$$

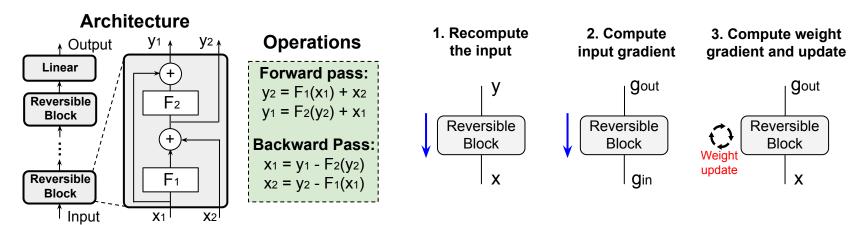
 $y_1 = F_2(y_2) + x_1$

Backward Pass:

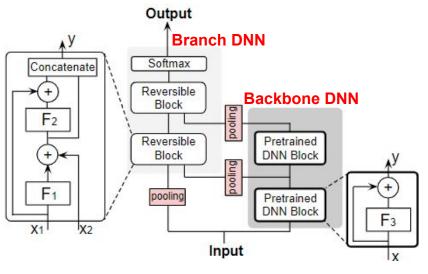
$$x_1 = y_1 - F_2(y_2)$$

 $x_2 = y_2 - F_1(x_1)$

 A reversible residual network (RevNet) is a variant of the canonical residual neural network (ResNet).



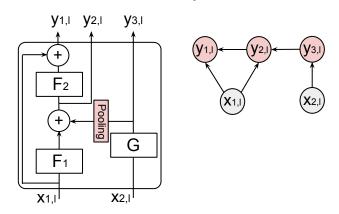
- The reversible architecture enables the backward pass computations to be performed without the need to store the input activations.
- Given the output y, the input activations are first recomputed. Afterwards, the input and weight gradients are computed with standard backward pass operations.



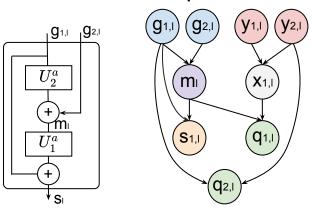
Duplex DNN

- This approach in turn imposes higher compute demands.
- We propose to judiciously train a subset of the model parameters to minimize training.
- The backbone DNN is frozen during the backward pass of the DNN.
- The normalization layers are removed from the branch DNN to facilitate the training process.

Forward pass



Backward pass

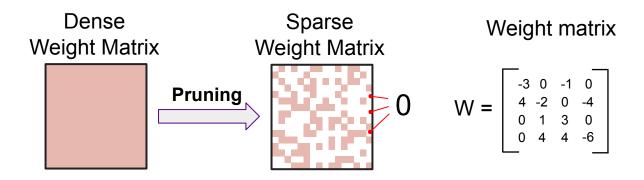


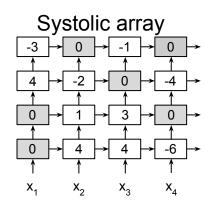
- We carefully schedule the computations of DuDNN during both forward and backward passes to achieve optimal system performance.
- We propose the optimal compute pattern to minimize memory usage and lifetime.

Topics

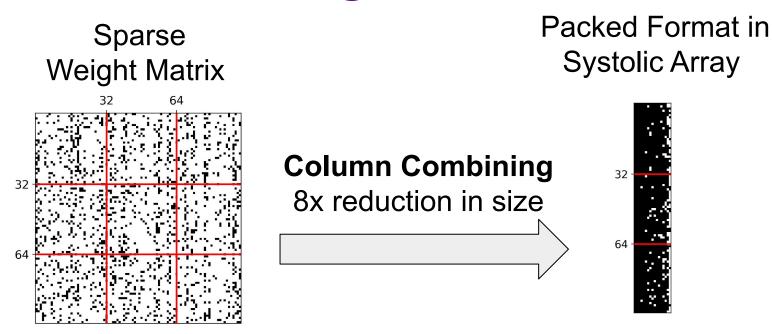
- Hardware accelerator: Overview
- Convolutional operation conversion
- Systolic array
- Convolutional Neural Network System
- Popular accelerator design

- Unimportant (i.e., small weights) are set to 0
- However, it is hard to leverage these zero weights to reduce the hardware cost

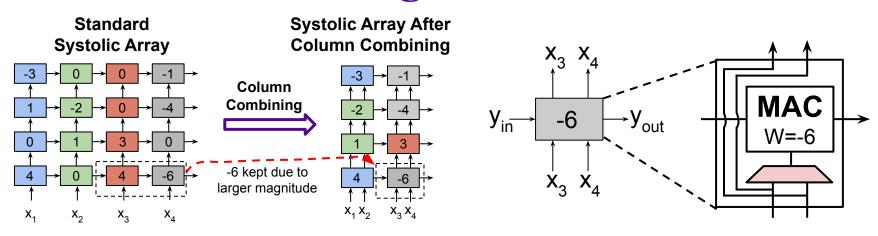




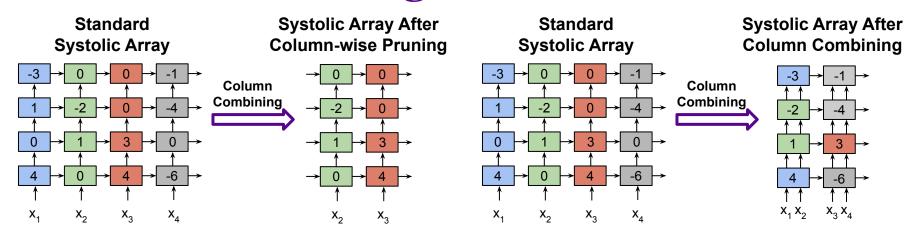
Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic array implementations: Column combining under joint optimization." *Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems*. 2019.



Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic array implementations: Column combining under joint optimization." *Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems*. 2019.

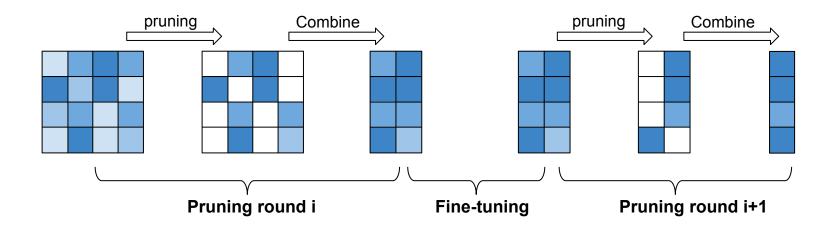


Column combining can greatly increase the utilization of the systolic array.



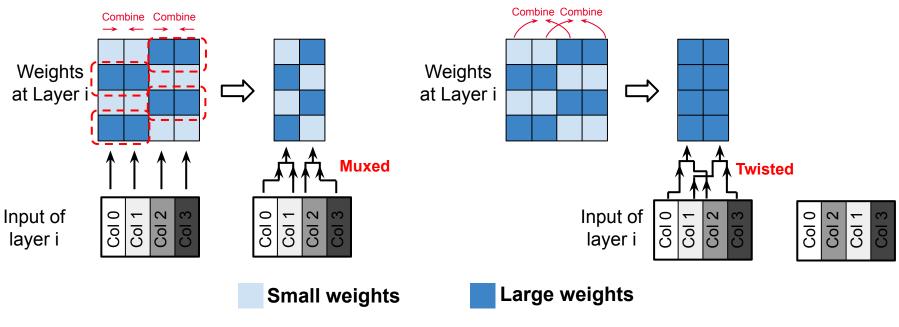
- Compared with column-wise Pruning (filterwise pruning), Column Combining allows for a much more flexible pruning pattern
- We can also apply Column Combining pruning on the input of each layer.

Column-Combining Pruning



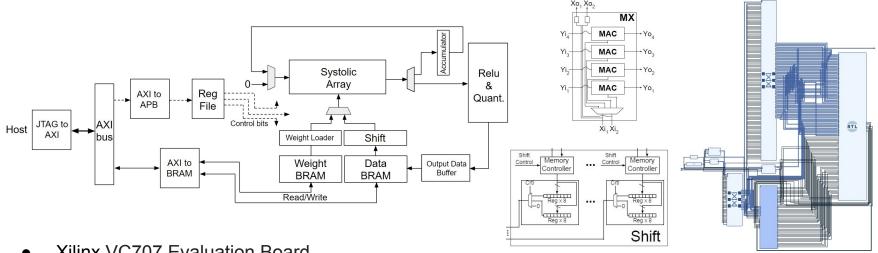
Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic array implementations: Column combining under joint optimization." *Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems*. 2019.

Column-Combining Pruning: Row Permutation



Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic array implementations: Column combining under joint optimization." *Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems*. 2019.

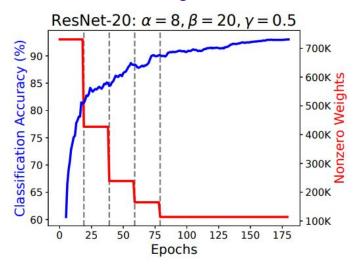
Hardware Implementation



- Xilinx VC707 Evaluation Board
- Total hardware available: Lookup Table (303600), Flip-Flops (607200), BRAM (1030, each 36Kb)
- More than 15K lines of verilog code
- 128 by 64 systolic array

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic array implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems. 2019.

Accuracy Evaluation Results



ResNet-20 on CIFAR-10

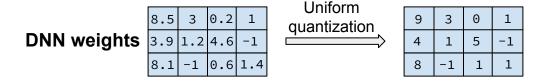
	Accuracy
Original DNN	72.08%
Structured Filterwise Pruning	69.0%
Column Combining	71.81%

VGG-19 on ImageNet (87.5% sparsity)

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic array implementations: Column combining under joint optimization." *Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems*. 2019.

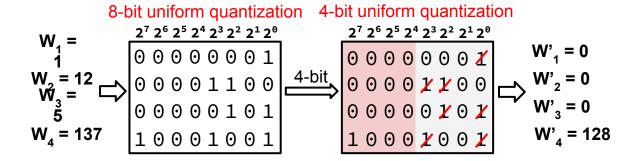
Prior Work: Efficient DNN Data Types

• Filter weights and activations can be quantized with low precision to accelerate the inference and reduce the model size.



Low-precision quantization leads to large accuracy loss.

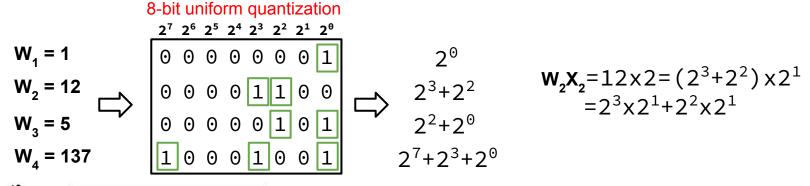
Problem on Low Precision Uniform Quantization

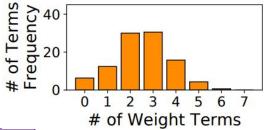


- Low-precision quantization leads to significant quantization error.
- Both weights and input activation are highly biased in values.

Representing Values in Power-of-two Terms

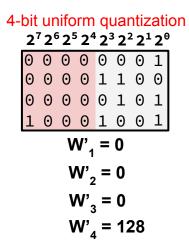
An integer value can be represented as a summation of power-of-two term(s).

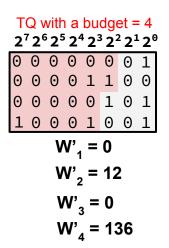




 Most quantized weight and data values can be represented with 2 or 3 power-of-two terms.

Term Quantization





- We can control the term-level computations by setting a group term budget.
- For a group of values, we rank and remove the small terms based on this budget.

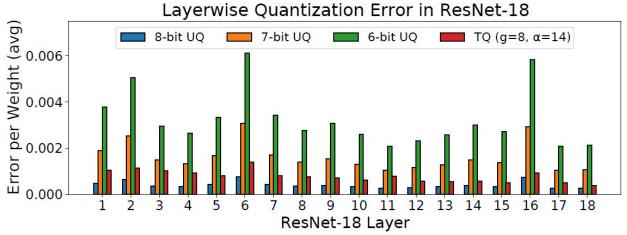
Hybrid Encoding for Shortened Expressions (HESE)

- To minimize the number of power-of-two terms in the binary input, we propose Hybrid Encoding for Shortened Expression (HESE)
- HESE offers:
 - Signed power-of-two expression with minimum length
 - Much less term-pair multiplications

Binary expression	$31 = 2^4 + 2^3 + 2^2 + 2^1 + 2^0$	5 terms
	$27 = 2^4 + 2^3 + 2^1 + 2^0$	4 terms

HESE	$31 = 2^5 - 2^0$	2 terms
	$27 = 2^5 - 2^2 - 2^0$	3 terms

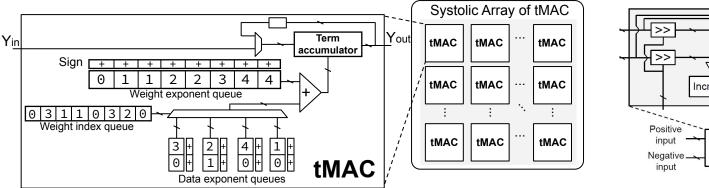
Quantization Error Analysis

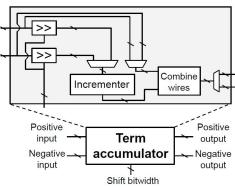


- We represent a group of 8 weights with 14 terms, each weight only requires 1.75 terms on average
- Term Quantization (TQ) introduces a small amount of quantization error over 8-bit uniform quantization (UQ)
- TQ achieves a much lower quantization error than 7-bit and 6-bit uniform quantization
- TQ with 1.75 term per value achieves a similar quantization error as 5-bit UQ

Multiplier-accumulator Design

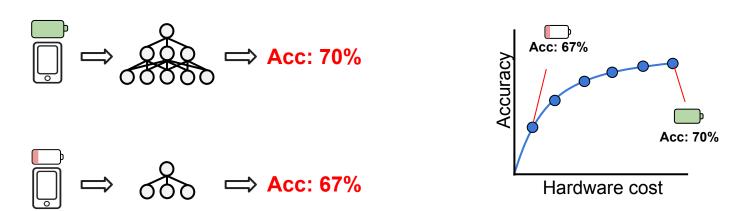
- We propose the term MAC (tMAC) for the efficient implementation of TQ.
- A tMAC processes all term-pair multiplications across a group of weight and data values.





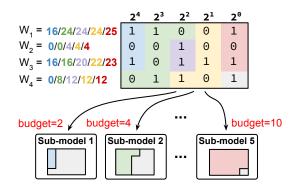
- Each term is represented by their corresponding exponent (2-3 bits).
- The term accumulation can be implemented using half adders.

Multi-resolution DNN Inference with TQ



 DNN is expected to run at different resolution to achieve a good trade-off between hardware cost and accuracy.

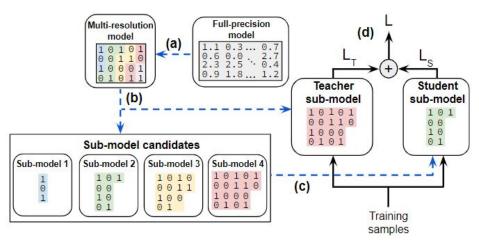
Multi-resolution DNN Inference with TQ



Multi-resolution DNN model

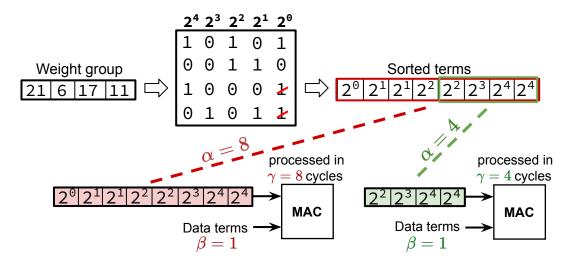
 A meta multi-resolution DNN model which can work under different term budget needs to be trained.

Multi-resolution DNN Training



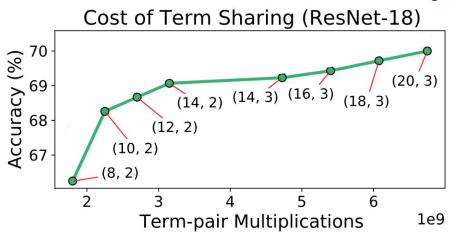
- We develop a multi-resolution training scheme to jointly train multiple DNN models under different term budgets.
- Instead of jointly train all the sub-models together, we apply the knowledge distillation framework to jointly train two sub-models per iteration.

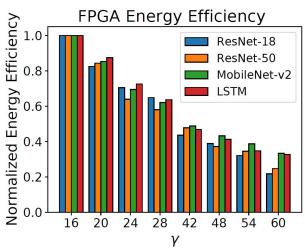
Multi-resolution DNN System



The energy consumption will scale with the term budgets of the weight and data.

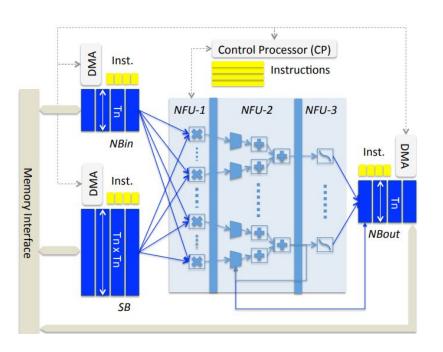
Evaluation: Accuracy Performance





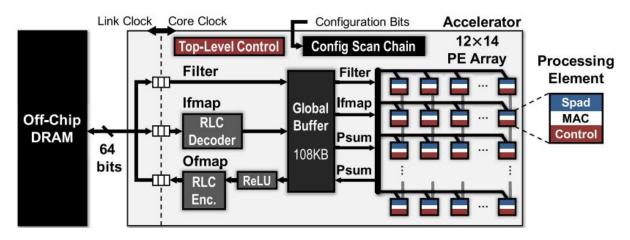
- The multi-resolution DNN incurs 0.4%-3.8% degradation compared to the original floating-point DNN (70.2%).
- The energy efficiency grows (3.25x on average), as term budget reduces from 60 to 16.

Diannao



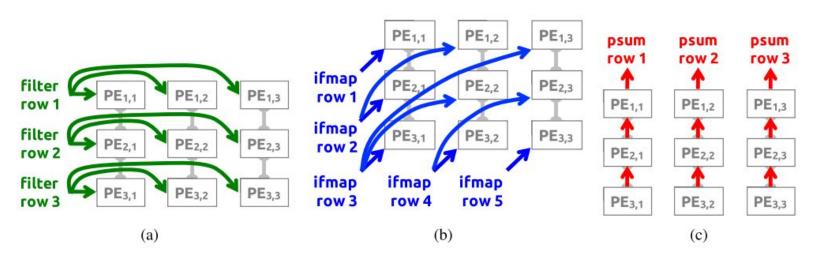
- The first popular end-to-end DNN (CNN) accelerator.
- Diannao is synthesized with 65nm using Synopsys tools, achieving a throughput of 482 GOP/s.
- NFU consists of three stages:
 - Multiplier units
 - Adder tree
 - Nonlinear unit

Eyeriss



- Eyeriss optimizes for the energy efficiency of the entire system, including the accelerator chip and off-chip DRAM, for various CNN shapes by reconfiguring the architecture.
- The core clock domain consists of a spatial array of 168 PEs organized as a 12 × 14 rectangle, a 108-kB GLB, an RLC CODEC, and an ReLU module.

Data Reuse for Memory Access Reduction



 Reuse and accumulation of data within a PE set reduce accesses to the GLB and DRAM, saving data movement energy cost.

Rerun-length encoding

Input: 0, 0, 12, 0, 0, 0, 0, 53, 0, 0, 22, ...

Run Level Run Level Run Level Term

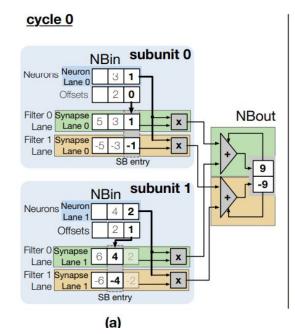
Output (64b): 2 12 4 53 2 22 0 5b 16b 5b 16b 5b 16b 1b

RLC is used for compressing the input activation.

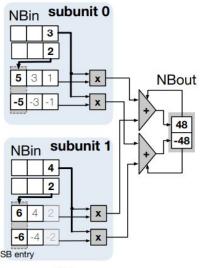
Cnvlutin

Input: $[1, 0, 3] \rightarrow [1, 3]$ (input) [0, 2] (offset)

Weight: [1, 3, 5]







(b)

- A large fraction of the computations performed by CNNs are intrinsically ineffectual as they involve a multiplication where one of the inputs is zero.
- Cnvlutin is a value-based approach to hardware acceleration that eliminates most of these ineffectual operations, improving performance and energy over a state-of-the-art accelerator with no accuracy loss