NYU

Lecture 11:
Al Accelerator Introduction and
CNN Accelerators

Notes

e First round of team meeting on Dec 1 and Dec 2.
e Extra-credit quiz today.

NYU SAI LAB

Recap

e Federated Learning
e Machine Learning Compiler
e Machine Learning System

NYU SAI LAB

Topics

Hardware accelerator: Overview
Convolutional operation conversion
Systolic array

Convolutional Neural Network System
Popular accelerator design

NYU SAI LAB

Al Accelerator

e The Al accelerator can execute part of the machine code that is related to the Al workload.

M e e e e e e mm — == 11
Yi Y]

Register| | Weight

R file SRAM Al
O ¢ accelerator CPU GPU
-> >
CPU <- g s 1@ el C t ¢ ¢ ¢

< [ZL]2 5 []~cmpute NoC

=5 core $

3 U
Al Accelerator| DRAM

NYU SAI LAB

Al Accelerator

5;' ___________________________ 11
< | |Register| [Weight
—— _) . ,
o file SRfM A Vector MAC
A - :
CPU <c:zx 3§> w3 Matrix MAC 10
<= £5| 8 < [<|Compute 538
5 core o
-]
Al Accelerator |-

e The compute core consists of Multiply and accumulator (MAC) engine for 2D matrix

multiplication.
e |t also contains vector multiplier MAC as well as special function unit.

NYU SAI LAB

Al Accelerator

B Welght
Xoo Woo - --F-----=--- > SRAVI\<|/
X10 Wio :(23 > v Woo
a |Xoo\Woo
Xot Woi| 2 [«1{D2< Compute
-1 >0 —>
X1 W =5| 0 core
=1 Xoo
Al Accelerator

Woo Wo1 % Xoo Xo1 | _ | WooXoo+Wo1X10 WooXo1+Wo1X11|_ [Yoo Yo1
W10 W11 X10 X11 W10Xo0+W11X10 W10Xo1+W11X11 Y10 Y11

NYU SAI LAB

Memory Access Reduction

B Weight do o ___1 eight
IS il > SRAM | Yoo IS il -)%AM
Xoo Woo | 5 vWor Xoo Woo | 5 yWo1
X10 W1o | > w&| Yoo X10 W1o | > o & [WoiXi
< KT8 Compute < K113 Compute
Xo1 Wo1 L - >0l —> Xo1 Wo1 L ->> o >
=< 5 [WooXoo| coOre =5 o core
X1 W11 > X1 W11 >
X10 Al Accelerator X11 Al Accelerator

e The computation and memory access pattern can be changed to minimize
the computational cost without impacting the results.

NYU SAI LAB

Topics

Hardware accelerator: Overview
Convolutional operation conversion
Systolic array

Convolutional Neural Network System
Popular accelerator design

NYU SAI LAB

Convolutional Layers

———

Convolution | .* Bl = .

ili?l

: * | =
Inputfeature maps Filter Output feature map .

e Core building block of a CNN, it is also the most computational intensive layer.

NYU SAI LAB o

Convolution

Filters

Inpur:;:zture c|.~‘ Output Feature @ Number of MACs: MxKxKxCxExF

c.” K|l - MeEs e Storage cost:
- Qo(‘\l K. 32x(MxCxKxK+CxHxW+MxExF)
H S
W %o X C: number of input channels
L

H,W: size of the input feature maps
M: number of weight filters

| K: weight kernel size

J E,F: size of the output feature maps

NYU SAI LAB ;

Convolution

(B, C, W, H)

NYU SAI LAB

Input Feature
maps

.
-
.
.

\
\

Filters

-
.

Output Feature
maps

-
-
*
.
-

(B, M, E, F)

12

Convolution

Input Feature
maps

(B, C, W, H)

NYU SAI LAB

Filters

Output Feature
maps

(B, M, E, F)

13

Convolution

(B, C, W, H)

NYU SAI LAB

Input Feature
maps

=
.
.
.
-
.

Filters

Output Feature
maps

=
.
.
.
-
*

(B, M, E, F)

14

Computational Cost: Standard Convolution

Input Feature

maps
T
=
(&)
1)
NYU SAI LAB

Filters

.

A

<

-
.
-
.
.
-

.
.
"
.
.
-

Output Feature
maps

(B’ M’ E’ F)

Number of MACs: BxMxKxKxCxExF

Storage cost:
32x(MxCxKxK+BxCxHxW+BxMxE xF)

B: batch size

C: number of input channels

H,W: size of the input feature maps
M: number of weight filters

K: weight kernel size

E,F: size of the output feature maps

We need to iterate over seven dimensions:
B, M, C, E, F, K(kernel width), K (kernel height)

(@)

Computational Dataflow for CNN

forb=1to B
form=TtoM
forc=1to C X— mi?ta;:;irer ——Z=XY
forw=1to E]
forh=1toF
forki=1to K Yy
fork2=1to K

out[b][m][e][f] += in[b][c][e+ki-(K+1)/2][f+k2-(K+1)/2] * filter[m][c][ki] [k2];

NYU SAI LAB

This simple loop nest can be transformed in numerous ways to capture different reuse
patterns of the activations and weights and to map the computation to a hardware
accelerator implementation.

A CNN'’s dataflow defines how the loops are ordered, partitioned, and parallelized

We can use the scaler machine to compute the results of CNN using this for loop .

Computational Dataflow for CNN

Scalar _ Xx__ .| Vector .2=XT
X multiplier 2=xy Multiplier y
y y
CPU & GPU -
= Scaler
o) machine
: '5
X——f | Matrx Z=XY s
Multiplier
Matrix
machine
% TPU

efficiency

NYU SAl LAB

How to Convert to Matrix Multiplication?

IFmaps
12
= 12
i 15 -
9: 18 8 Traversal § . .
Bl o (e, | € e Astandard Convolutional operation
AN =R 8 can be converted to 2D matrix
i3 14 |15 |18 y multiplication using Im2Col
L) L operations.

IFmap matrix

1350 [In[aa]ia] 4 .o [oa]oo
iall 15 [l 21415 = [o1]or1] S
i6 [i7 [a6 [17] | % [02]o2| &
7118 [uail15 [17 [18] [= [o3]o3| &
i34 10 [11:[13ifi4i] [< |O0]O0] Q.
112 [1a |15 |2 5415 [T [i2:]14] 15 ﬁ?mmg
13 [1a 16 |17 [ia[iaili6 17 [iaTiaili6 117 | [o2o2] it
14115 17 18 [u4i[15 [17 [18 14115 [17 [18] y = [08]03| O
K=CixHrxWyr N=Co

NYU SAI LAB

18

How to Convert to Matrix Multiplication?

Input feature map

aoo

ao1

ao2

ao3

aio

a1

ai2

a3

az2o

az1

az2

az3

aso

as31

as2

as3

NYU SAI LAB

Weight filter

Woo0

Wo1

Wo2

W10

W11

W12

W20

W21

W22

Input matrix

aoo

ao1

aoz

aio

ai

ai2

az2o

a1

az2

ao1

aoz

ao3

a1

ai2

ai3

a1

az2

az3

aio

a1

ai2

a20

a21

az2

aso

as1

as2

X w11

an

ai2

a3

az1

az2

az3

as1

as2

as3

Weight
matrix
W00

Wo1
W02
W10

W12
W20

W21

W22

19

How to Convert to Matrix Multiplication?

Filter

NYU SAI LAB

Convolution:

l

Matrix Mult:

Input Fmap Output Fmap

Topics

Hardware accelerator: Overview
Convolutional operation conversion
Systolic array

Convolutional Neural Network System
Popular accelerator design

NYU SAI LAB

21

Hardware Architectures for DNN Processing

Major building blocks:

Accumulator

. Processing = e Processing engine
00— | engine --S e e Accumulator
Reg oo 3% e Regfile
File === S = e Special function unit
Control bits v ,—T 7—‘ - e Memory subsystem
Memory controller o Weight SRAM
| | o Data SRAM
DRAM Weight Data « o DRAM
SRAM SRAM
1
Read/Write

NYU SAI LAB N

Computing Paradigms

>

Wi

Memory

t ¢

. f

-W1-
| |

> >

Memory

Memory

Spatial architecture can achieve great reuse of the extracted content,

leading to a reduced memory access cost.

23

Double Buffering

Systolic Systolic
Array Array
Mem: Mem:2 Mem: Mem:2
DRAM DRAM

NYU SAI LAB

Double buffering in hardware
design is a technique used to
improve the efficiency and
performance of data processing,
especially in systems that
require smooth and continuous
data transfer.

The idea is to overlap the data
production and consumption
processes to avoid delays.

24

Systolic Array (Weight Stationary Version)

e Kung and Leiserson, "Systolic Arrays for VLSI," 1978 and Kung, "Why systolic architectures?' 1982

e 2D grid of multiplier-accumulators (MACs) for matrix multiplication
e Used by Google TPU for deep learning (2017), etc

Systolic cell

t

?

?

?

2D Systolic Array

?

>

>

>

Y [z=wx+y

V=X

?

?

?

?

?

?

?

?

NYU SAI LAB

B

TPU (Google)

25

Systolic Cell

v

Y |z=wx+y| £
V=X

E

NYU SAI LAB

Takes data (x and y) as input

w stays in the systolic cell
Performs a multiply-accumulate
operation

26

Systolic Cell

NYU SAI LAB

Z=WX+y
V=X

[x=4

Systolic Cell

y=2 Z
|z =W+ 2—
——w is stored in

T x=4 the MAC

NYU SAI LAB

Systolic Cell

NYU SAI LAB

2=64+2

[x=4

Systolic Cell

[v=4

7=26

— Mz=64+2— "~

NYU SAI LAB

Multiplier Accumulator

Yi

Xi

0
Ui FA CoH Ci FA CoH-rCi FA Co- Ci FA CoCi FA Cof-{Ci
S S S S S
A
/1

5.8 88 58

A B A B A B A

Bit-serial Multiplier-Accumulator (MAC)

NYU SAI LAB

Yo

Visualizing Systolic Array Multiplication

Weight Data Result 0—|2:040 Fos| 3:0+0 Fs{-4-0+0 |»

Matrix Matrix Matrix
21 1] [1 o]0 OT OT OT
2 3-4 0 3~ |6 1
-2 O—» 20+0 -1 0+0F— 1-0+0 P>

2
Weights in red are preloaded 1
into the systolic array

Skewed
input

W o @ —F
Ny @ @ —>

NYU SAI LAB

Visualizing Systolic Array Multiplication

Weight Data Result 0—-2:0+0 —> 3:0+0 —>{-4:0+0 |>

Matrix Matrix Matrix
1] o] o]

241 |1 0] =]0-
-2 3 -4 03[|6 1 2 0
-2

2 O—= 21+0 —>»-1-0+0pF—> 1-0+0 P>

Weights in red are preloaded 0 0 ®
into the systolic array 3 2
2

NYU SAI LAB

Visualizing Systolic Array Multiplication

Weight Data Result 0—{-2:1+0 —»{ 3:0+0 |—>-4:0+0 [>

Matrix Matrix Matrix
o] o] o]

241 |1 0] =]0-
-2 3 -4 03|]6 1 0 2
-2

2 O—20+0 —>»-1-0+2F—>» 1-0+0 P>
Weights in red are preloaded 3 2
into the systolic array 2

NYU SAI LAB

Visualizing Systolic Array Multiplication

Weight Data Result 0—-2:0+0 —> 3:0+-2—»-4:0+0 |>

Matrix Matrix Matrix
o] o] 2|

2 -1 1 y 1 0(_]0 -1
2 34 0 3] |6 1 0 -3
-2

2 0> 2:0+0 —>-13+0—>1-2+2> 0
Weights in red are preloaded o
into the systolic array

NYU SAI LAB

Visualizing Systolic Array Multiplication

Weight Data Result 0—-2:0+0 —>{ 3:3+0 |—»-4-2+-2> 6

Matrix Matrix Matrix
o] o] 2|

2-11>< 1 0| _1]0-1
2 3-4 0 3~ |6 1 0 0
2

2 0= 2:0+0 —>-1-0+0—> 12+-3>-1,0
Weights in red are preloaded

into the systolic array

NYU SAI LAB

Visualizing Systolic Array Multiplication

Weight Data Result 0—-2:0+0 [—> 3:0+0 —>-4:2+9 = 1,6

Matrix Matrix Matrix
o] o] o]

2-11>< 1 0| _1]0-1
2 3-4 0 3~ |6 1 0 0
2

2 00— 2:0+0 —>»-1-0+0—>10+0 @, -1,0
Weights in red are preloaded

into the systolic array

NYU SAI LAB

Topics

NYU SAI LAB

Hardware accelerator: Overview
Convolutional operation conversion
Systolic array

Convolutional Neural Network System
Popular accelerator design

Chen, Yu-Hsin, et al. "Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks."
IEEE journal of solid-state circuits 52.1 (2016): 127-138.

38

Computational Scheduling

Conv [a]
3x3x384

Conv [b]
3x3x768

.............................. 0Oms SRS IR TR s w yms
0,
Gg.?Ps Tpfc;fs/s 33"@ Conv [a] Conv[d]| 1.8 10.8 69%
............................. 012ms [Conv[al|(Convc]|(Conv[d]] 24 98 629 \3X3x384 3x3x768 | GFLOPs TFLOPs/s Util.
5 B8 wooL \Sxaxa8d |\ D304)| xI08) GROPs TRORSIS VI . Lo s 017 ms
GFL'OPS TFLéPs/s Util.
.............................. 0.24 ms i irinsnaerooams: €NV [b]| [Conviel 18 11 71%
Conv [c] 0.6 55 35% 65 M GaR 3x3x768 | | 3x3x384 GFLOPs TFLOPs/s Ut
3x3x384 GFLOPs TFLOPs/s Util. GFLOPs TFLOPS/s Um_o ... 0.33ms

.............................. 0.35ms

................................. 0.37 .
Conv[d] 12 93 59% e Avg. util: 70%

Concat
oo
3x3x768 |GFLOPs TFLOPs/s Ut Concat Avg. util: 62% 1920 22%1)
............................ 0.48 ms 1920 (14%1)

Concat Avg. util: 48%
1920

(1) Sequential Schedule (2) Greedy Schedule (3) Our Schedule (I0S)

e The branchy CNN can be scheduling and computed in a much higher efficiency.
e Two convolutional operations can be combined to achieve less memory cost.

NYU SAI LAB

Ding, Yaoyao, et al. "los: Inter-operator scheduler for cnn acceleration." Proceedings of Machine Learning and Systems
3 (2021): 167-180.

39

Memory Efficient Neural Network Training

Forward pass Backward pass Normalized Number of Parameters
Storage during DNN Training
Memory Memory Memory
———————————— 1 [ittt
| ' Lo e ! ' : :
“““ TOutput TTT777 pOutput T 4 Output ResNet-18 x -\L‘Vetl.gh:.
Hl Aclivation
|G |t
I ResNet-50
Layer O Layer O
| (o) (o] V6616 i
| Input |

e The memory footprint grows proportional with the layer depth.
e On top of this, small edge devices typically have limited on-chip storage, leading to frequent and
costly accesses to off-chip memories.

NYU SAI LAB

Zhang, Sai Qian, et al. "CAMEL: Co-Designing Al Models and eDRAMs for Efficient On-Device Learning." 2024 IEEE
International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.

40

Memory Efficient Neural Network Training

Residual Architecture Reversible Architecture
) yiy y2
] *’@ Forward pass:
= y2 = F1(x1) + x2
y1 = F2(y2) + x1
F # | Backward Pass:
F X1 =y1 - F2(y2)
x2 = y2 - F1(x1)
X X1 X2

e Areversible residual network (RevNet) is a variant of the canonical residual
neural network (ResNet).

U 8 I L B Zhang, Sai Qian, et al. "CAMEL: Co-Designing Al Models and eDRAMSs for Efficient On-Device Learning." 2024 IEEE
N Y A A International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.

Memory Efficient Neural Network Training

Architecture

p Output iy o y2
Linear i
1 :'I
Reversible] / F-
Block :
1 / ‘
[
Reversible F1
Block |
f Input X1 X2

Operations

Forward pass:
y2 = F1(x1) + x2
y1 = F2(y2) + X1

Backward Pass:
X1 = y1 - F2(y2)
x2 = y2 - F1(x1)

1. Recompute
the input

y

X

2. Compute
input gradient

Jout

Reversible Reversible
Block Block

gin

3. Compute weight
gradient and update

Jout
»‘ Reversible
< Block
Weight

update

X

e The reversible architecture enables the backward pass computations to be performed without the need
to store the input activations.
e Given the output y, the input activations are first recomputed. Afterwards, the input and weight gradients
are computed with standard backward pass operations.

NYU SAI LAB

Zhang, Sai Qian, et al. "CAMEL: Co-Designing Al Models and eDRAMSs for Efficient On-Device Learning." 2024 IEEE
International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.

42

Memory Efficient Neural Network Training

Output
i e This approach in turn imposes higher compute
y Branch DNN demands
Concatenate| [.
Reversible
= Backbone DNN e We propose to judiciously train a subset of the
£ g . model parameters to minimize training.
Reversible — Pretrained
@ . DNN Block 4‘y
- e The backbone DNN is frozen during the
F1 = [Pretrained Q backward pass of the DNN.
DNN Block
Tl ke | — Fs o
Input : i e The normalization layers are removed from the
branch DNN to facilitate the training process.
Duplex DNN
U ‘8 I L Zhang, Sai Qian, et al. "CAMEL: Co-Designing Al Models and eDRAMs for Efficient On-Device Learning." 2024 IEEE
NY A AB International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.

43

Memory Efficient Neural Network Training

Backward pass

Forward pass
y1l Y21 Y3 gu 9 @@ m@
(m) ()

— 0@
k- \ ./

&) @)
X1, X2, @

We carefully schedule the computations of DUDNN during both forward and backward
passes to achieve optimal system performance.
We propose the optimal compute pattern to minimize memory usage and lifetime.

Zhang, Sai Qian, et al. "CAMEL: Co-Designing Al Models and eDRAMSs for Efficient On-Device Learning." 2024 IEEE
International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.

J

5u!|ca|

G

J/

.

NYU SAI LAB

44

Topics

Hardware accelerator: Overview
Convolutional operation conversion
Systolic array

Convolutional Neural Network System
Popular accelerator design

NYU SAI LAB

45

Column Combining

e Unimportant (i.e., small weights) are setto 0
e However, it is hard to leverage these zero weights to reduce the hardware cost

Dense Sparse Weight matrix Systolic array
Weight Matrix Weight Matrix [3P{o 10}
| t

T
T
T
B

1
N

1
N

Pruning =0

=

W =

co &~
A wo
> o

A

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic

NYU SAI LAB array implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International 46

Conference on Architectural Support for Programming Languages and Operating Systems. 2019.

Column Combining

Weight Matrix Systolic Array

32 64

R NI T EE
Gl X S B R :
R Rl S 1 .
st ke Column Combining » .
"':'..'_-_'-.:'_.,: F‘_-_..- 1 "I_-.'; . wEE . . .
STy [DRER FIRT 8x reduction in size
o R FRE A I
e e W dEel
oo btz il =T 1 o
e T 0
. -J ot I-'_r_l:lI Y |
: A N IO e,
[P IRT WFIE IPR | BT

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic
NYU SAI LAB array implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International 47

Conference on Architectural Support for Programming Languages and Operating Systems. 2019.

Column Combining

Standard Systolic Array After
Systolic Array Column Combining X_ X A A
3 4 - I |
S -
1 1 i) Column T] -
| 1 |—>| 2 |—>| 0 |—>| 4 |—> Combining‘ y 6 y MAC S
1 1 1 t ——) in | ~ out
|$H1H3H0P | i T\\ W=-6
(a0 |-[a]-[6 >~ -keptdueto X_ X R /_Iﬂ
I S . larger magnitude 3 ™M \\\
X1 X2 X3 X4

e Column combining can greatly increase the utilization of the systolic array.

NYU SAI LAB

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic
array implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International 48
Conference on Architectural Support for Programming Languages and Operating Systems. 2019.

Column Combining

Standard Systolic Array After Standard Systolic Array After
Systolic Array Column-wise Pruning Systolic Array Column Combining
Ero-EE ., II+EI Ero-EEr .,
| 1 |_,| 2 |_,| 0 |_,| 4 |_, Combining 2 0 | 1 |_,| 2 |_,| 0 |_,| 4 |_, Combining
))) t))) t Y
Ic;H;H?H?P I?HzH?H?P
Ca-Co - Ca-Co -
t t t 1 t t t 1
X1 X2 X3 X4 X2 X3 X1 X2 X3 X4

e Compared with column-wise Pruning (filterwise pruning), Column Combining allows for
a much more flexible pruning pattern

e We can al

NYU SAI LAB

so apply Column Combining pruning on the input of each layer.

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic
array implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International 49

Conference on Architectural Support for Programming Languages and Operating Systems. 2019.

Column-Combining Pruning

NYU SAI LAB

pruning Combine | pruning | Combine
J \ J \ J
Y Y Y
Pruning round i Fine-tuning Pruning round i+1

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic
array implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating Systems. 2019.

50

Column-Combining Pruning: Row Permutation

Combine Combine Combine Combine

e o At
_

Weights
at Layer i —

Twisted

‘_f} ﬁ_‘Muxed

Input of il Input of |©|— O [N | —
layer i 3|3 layeri [S|S SI8 (S

Small weights B Large weights

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic
NYU SAI LAB array implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International 51

Conference on Architectural Support for Programming Languages and Operating Systems. 2019.

Hardware Implementation

§ ~Y04
—Yo3
Systolic g Relu Yo,
] AXI to Reg 0 ol . Yor
- app [e Quant.
JTAG to . ‘AXI RTL
Hest | ™ w [" lbus |WeightLoader || Shift | J
| 1 shift 1 Shift [} =N
0 i utput Data Control_, [Memo ve Control [Memo —rt | g
B el T i = e] ==
Read/Write T ‘ﬁ_u%yg . {—ﬂ%‘g? :§ =
N _ 1 Shift
e Xilinx VC707 Evaluation Board
e Total hardware available: Lookup Table (303600), Flip-Flops (607200), BRAM (1030, each 36Kb)
e More than 15K lines of verilog code
e 128 by 64 systolic array

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic
NYU SAI LAB array implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International 52
Conference on Architectural Support for Programming Languages and Operating Systems. 2019.

Accuracy Evaluation Results

ResNet-20: a=8,=20,y=0.5

S » 700K Accuracy
‘gso_ P SOOK,§ Original DNN 72.08%
< Lo
§751 [P ok & Structured Filterwise 69.0%
8o, E P 300K & Pruning
= [, =
éﬁs' . — 5= Column Combining 71.81%
601 ~ | | jm—————————— lj00K
0 25 50 75 100 125 150 175
Epochs VGG-19 on ImageNet
ResNet-20 on CIFAR-10 (87.5% sparsity)

NYU SAI LAB

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic
array implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating Systems. 2019.

53

Prior Work: Efficient DNN Data Types

e Filter weights and activations can be quantized with low precision to accelerate the
inference and reduce the model size.

7 Uniform 7

) 3 quantization 3
DNN weights [3.9]1.2 -1 1 -1
-1 1.4 -1l 1|1

e Low-precision quantization leads to large accuracy loss.

Li, Fengfu, Bo Zhang, and Bin Liu. "Ternary weight networks."

NYU SAI LAB Rastegari, Mohammad, et al. "Xnor-net: Imagenet classification using binary convolutional neural networks."

Zhou, Aojun, et al. "Incremental network quantization.”

Problem on Low Precision Uniform Quantization

W, =

-—

=1

Wi

W,

(3, %)

1

NYU SAI LAB

2

3

8-bit uniform quantization 4-bit uniform quantization

=

7

272625242322 2120

(ONCNCNONONONCN]
O0001100
O0000101
10001001

272625242322 2120

4-bit

O000000X
O000YX00
OO0000Y0X
1000Y00%

=

Kung, Hsiang-Tsung, Bradley McDanel, and Sai Qian Zhang. "Term quantization: Furthering quantization at run time."
SC20: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2020.

W, =0
W, =0
W, =0
W, =128

Low-precision quantization leads to significant quantization error.
Both weights and input activation are highly biased in values.

55

Representing Values in Power-of-two Terms

e An integer value can be represented as a summation of power-of-two term(s).

=2 =

of Terms
Frequency

NYU SAI LAB

8-bit uniform quantization

27 26 25 2% 23 22 21 2°
=1 ©000000[1 20
=12 =y (0000 11]e 0 23+22
=5 00000101 22420
=137 1]o 0 ol1]e ol1] 27+23+2°
40 .

N
o

alllin.

o

0123456 7
of Weight Terms

W,X,=12x2=(23+22) x2*
=23x21+22x2!

Most quantized weight and data values
can be represented with 2 or 3

power-of-two terms.

Kung, Hsiang-Tsung, Bradley McDanel, and Sai Qian Zhang. "Term quantization: Furthering quantization at run time." 56
SC20: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2020.

Term Quantization

w 22222120 W

2 > O 010 2

5 _0 10 & 4
Budget = 2

X 23 222t 20 X

9 > 100 % 8

3 0O 01 % 2

>[21 2]
H Sty iz -
>[2321]

4-bit uniform quantization

2726252%2322212°
00000001
0001100
0000101
10001001
W, =0
W, =0
W, =0
W, =128

TQ with a budget =4
272625242322212°

OO0O0000O01

=R © O
© OO
Ol o NO)
ol oNO)
R oK
(OO NO)
[l I ©)

2 =
Il
Olo ~ K

N
n

-

N

W, =0
W, =136

e \We can control the term-level computations by setting a group term budget.
e For a group of values, we rank and remove the small terms based on this budget.

NYU SAI LAB Kung, Hsiang-Tsung, Bradley McDanel, and Sai Qian Zhang. "Term quantization: Furthering quantization at run time."

SC20: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2020.

Hybrid Encoding for Shortened Expressions (HESE)

e To minimize the number of power-of-two terms in the binary input, we propose Hybrid Encoding
for Shortened Expression (HESE)
e HESE offers:
o Signed power-of-two expression with minimum length
o Much less term-pair multiplications

_ _ 31 =24+23+22+2'+20 5terms
Binary expression

27 = 24423421420 4 terms
1 = 2520 2 terms

HESE < 22
27 = 25-22.20 3 terms

NYU SAI LAB Kung, Hsiang-Tsung, Bradley McDanel, and Sai Qian Zhang. "Term quantization: Furthering quantization at run time."
SC20: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2020.

58

Quantization Error Analysis

Layerwise Quantization Error in ResNet-18

2 BN 8-bitUQ [N 7-bitUQ EEE 6-bitUQ HEE TQ (g=8, a=14)
(o]

L 0.006

-+

fle=

o

0 0.004

=

)

Q 0.002

) i :

S MAAREARREARAARE AL
0.000 —H

1 2 2 4 5 & 7 8 9 10 11 12 13 14 15 16 17 18
ResNet-18 Layer
We represent a group of 8 weights with 14 terms, each weight only requires 1.75 terms on average
e Term Quantization (TQ) introduces a small amount of quantization error over 8-bit uniform
quantization (UQ)
e TQ achieves a much lower quantization error than 7-bit and 6-bit uniform quantization
e TQ with 1.75 term per value achieves a similar quantization error as 5-bit UQ

NYU SAI LAB Kung, Hsiang-Tsung, Bradley McDanel, and Sai Qian Zhang. "Term quantization: Furthering quantization at run time."

SC20: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2020.

59

Multiplier-accumulator Design

e \We propose the term MAC (tMAC) for the efficient implementation of TQ.
e AtMAC processes all term-pair multiplications across a group of weight and data values.

_ [Systolic Array of tMAC)

Yin

|
LT 3 LI =
_D_g Term You |imac | |tmac | |tmac
accumulator

Sign =

I I I

0

Combine A‘_ﬂ:'
wires B

111(]2|2]3 /|tmac | [tmac |- |tmac

Incrementer

Weight exponent queue '

[e[3[i]1]e[3[2[e < i P

Weight index queue ‘|~ ‘|~ ‘|~ I:l Positive ™~ *" Positive
21 (41 11] tMAC | | tMAC tMAC input - Term —~— output
! Negative - accumulator |~—Negative
10 190 [0 tMAC AN J input T output
Data exponent queues ! Shift bitwidth

e Each term is represented by their corresponding exponent (2-3 bits).
e The term accumulation can be implemented using half adders.

NYU SAI LAB

Kung, Hsiang-Tsung, Bradley McDanel, and Sai Qian Zhang. "Term quantization: Furthering quantization at run time."
SC20: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2020.

60

Multi-resolution DNN Inference with T(Q

o

L)

[e]

Co

L)

[e)

-
= = Acc: 70% | Aot ok
£
S -
<
Acc: 70%
— C{S}) —> Acc: 67% Hardware cost

e DNN is expected to run at different resolution to achieve a good trade-off
between hardware cost and accuracy.

NYU SAI LAB

Zhang, Sai Qian, et al. "Training for multi-resolution inference using reusable quantization terms." Proceedings of the 26th
ACM International Conference on Architectural Support for Programming Languages and Operating Systems. 2021.

61

Multi-resolution DNN Inference with T(Q

4 3 2 1]

W, = 16/24/24/24/25
W, = 0/0/4/4/4

W, = 16/16/20/22/23
W, = 0/8/12/12/12

budget=2 /~ budget=4 / \\ budget=10

Sub-model 1| [Sub-model 2 Sub-model 5

J |_1 |

Multi-resolution DNN model

o R o H|v
I Cl= Y
= R R on
o R o ol
B o RN

e A meta multi-resolution DNN model which can work under different term budget needs to be
trained.

U ‘8 I L B Zhang, Sai Qian, et al. "Training for multi-resolution inference using reusable quantization terms." Proceedings of the 26th
N Y A A ACM International Conference on Architectural Support for Programming Languages and Operating Systems. 2021.

Multi-resolution DNN Training

Full-precision L.

model (d)
978 L, $ L,

Teacher Student
sub-model sub-model

10101 101
(c]

Sub-model candidates

Sub-model 1| [Sub-model 2| [Sub-model 3} (Sub-model 4 A
1 101 ASED! | B [~ T e ==
0 00 011 |(@@1l1l@ (c)
1 10 100 1000 |
01 01 OIS0
Training
samples

e We develop a multi-resolution training scheme to jointly train multiple DNN models under different
term budgets.

e Instead of jointly train all the sub-models together, we apply the knowledge distillation framework
to jointly train two sub-models per iteration.

U ‘8 I L B Zhang, Sai Qian, et al. "Training for multi-resolution inference using reusable quantization terms." Proceedings of the 26th
N Y A A ACM International Conference on Architectural Support for Programming Languages and Operating Systems. 2021.

Multi-resolution DNN System

2% 23 22 21 20

10101
Weight group ©06110 Sorted terms
2ile iz (1] =>|1 0 0 0 x| [20]2121]22]22[23]24[2*
-
©10 1 % - - bv//
- ///
OL - processed in 7/ processed in
- - v = 8 cycles / v = 4 cycles
[2°12125[22]22[23]2%]27 > (22]23[24]2% >
MAC MAC
Data terms —> Data terms —>
p=1 p=1

e The energy consumption will scale with the term budgets of the weight and data.

U ‘8 I L B Zhang, Sai Qian, et al. "Training for multi-resolution inference using reusable quantization terms." Proceedings of the 26th
N Y A A ACM International Conference on Architectural Support for Programming Languages and Operating Systems. 2021.

Evaluation: Accuracy Performance

Cost of Term Sharing (ResNet-18) 9 FPGA Emergy EfMicienty
@, EEE ResNet-18
< 70 - o 3 ResNet-50
> 20, 3) g 08 B MobileNet-v2
09 - ' > B LSTM
o (14,2) (14,3) (16.3) (15 3, 0.6
C 68+ c
3 {12,2) L]
O — 0.4
< N
(8, 2) © 0.2
- T T T T =
2 3 4 5 6 B
Term-pair Multiplications Te9 < I 20 24 28 47 48 B4 60

14

e The multi-resolution DNN incurs 0.4%-3.8% degradation compared to the original
floating-point DNN (70.2%).
e The energy efficiency grows (3.25x on average), as term budget reduces from 60 to 16.

U 8 I L B Zhang, Sai Qian, et al. "Training for multi-resolution inference using reusable quantization terms." Proceedings of the 26th
N Y A A ACM International Conference on Architectural Support for Programming Languages and Operating Systems. 2021.

Diannao

oej1au| Alowa N

v

. > Control Processor (CP) e The first popular end-to-end
' . TR e DNN (CNN) accelerator.
veu2 Bneu3 e Diannao is synthesized with
. \‘ ; 65nm using Synopsys tools,
y R il achieving a throughput of 482

ul

II GOP/s.

" e NFU consists of three stages:
o Multiplier units

o Adder tree

o Nonlinear unit

sA ’.*.E\ﬂ

NYU SAI LAB

Chen, Tianshi, et al. "Diannao: A small-footprint high-throughput accelerator for ubiquitous machine-learning." ACM

SIGARCH Computer Architecture News 42.1 (2014): 269-284.

66

Eyeriss

Link Clock . Core Clock = Configuration Bits Accelerator
W Top-Level Control Config Scan Chain 12x14
| PE Array | Processing

Filter

Element

-
-
2

_ Global 2 Spad
DRAM B - - SN Control
64
bits

e Eyeriss optimizes for the energy efficiency of the entire system, including the accelerator
chip and off-chip DRAM, for various CNN shapes by reconfiguring the architecture.

e The core clock domain consists of a spatial array of 168 PEs organized as a 12 x 14
rectangle, a 108-kB GLB, an RLC CODEC, and an ReLU module.

NYU SAI LAB o

Data Reuse for Memory Access Reduction

PE1,2 PEi3 | psum psum psum

{’ row 1 row 2 row 3
PE23 * ? *

filter é: = N‘ PE\[= PE2,2 l

row1 i s S PE1,1 PE1 PE1,3

Filter \ [_PE_ * f f
PE] PE PE ' 33 |

row 2 ad 5¢ e ! / PE2,1 PE2: PE23

Filter é: [pE \' PE\ — ifmap ifmap ifmap I I ‘E _

row 3 il i 33 row3 rowd4 rowS5s PE3,1 PEs PE33

(a) (b) (c)

e Reuse and accumulation of data within a PE set reduce accesses to the GLB
and DRAM, saving data movement energy cost.

68

NYU SAI LAB

Rerun-length encoding

Input: 0.0, 12,0,0,0, 0, 53, 0,0, 22, ...
Run Level Run Level Run Level Term
Output (64b): [2| 12] 4] 53 |2 22 |0

< > < >< >
5b 16b 5b 16b S5b 16b 1b

e RLC is used for compressing the input activation.

NYU SAI LAB

Input: [1, 0, 3] — [1, 3] (input) [0, 2] (offset)
Cnvlutin Weight: [1, 3, 5]

cycle 0 cycle 1
NBin Subunit 0 NBin Subunit 0 e Alarge fraction of the computations
Neurons 1eWos[T T4 |- performed by CNNs are intrinsically
Ofsets D: 0_ ineffectual as they involve a multiplication
F"[Z;ﬁsﬂ"‘n?‘; 3 where one of the inputs is zero.

e Cnvlutin is a value-based approach to
hardware acceleration that eliminates most
of these ineffectual operations, improving

Filter 1 Synapse
Lane| Lane0
SB entry

NBin subunit 1

I

Neurons Newron ™ T, To 1 performance and energy over a

Offsets state-of-the-art accelerator with no accuracy
v OOA loss.
R

(a)

U L Albericio, Jorge, et al. "Cnvlutin: Ineffectual-neuron-free deep neural network computing." ACM SIGARCH Computer
NY SAI AB Architecture News 44.3 (2016): 1-13. 70

