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Lecture 11:
Al Accelerator Introduction and
CNN Accelerators



Notes

e First round of team meeting on Dec 1 and Dec 2.
e Extra-credit quiz today.
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Recap

e Federated Learning
e Machine Learning Compiler
e Machine Learning System
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Topics

Hardware accelerator: Overview
Convolutional operation conversion
Systolic array

Convolutional Neural Network System
Popular accelerator design
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Al Accelerator

e The Al accelerator can execute part of the machine code that is related to the Al workload.
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Al Accelerator
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e The compute core consists of Multiply and accumulator (MAC) engine for 2D matrix

multiplication.
e |t also contains vector multiplier MAC as well as special function unit.
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Al Accelerator
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Memory Access Reduction
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e The computation and memory access pattern can be changed to minimize
the computational cost without impacting the results.
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Topics

Hardware accelerator: Overview
Convolutional operation conversion
Systolic array

Convolutional Neural Network System
Popular accelerator design

NYU SAI LAB




Convolutional Layers

—————————————————————————————————————————————————————————————————————

Convolution | .* Bl = .

ili?l

: * | =
Inputfeature maps Filter Output feature map .

e Core building block of a CNN, it is also the most computational intensive layer.
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Convolution

Filters

Inpur:;:zture c|.~‘ Output Feature @  Number of MACs: MxKxKxCxExF

c.” K|l - MeEs e Storage cost:
- Qo(‘\l K. 32x(MxCxKxK+CxHxW+MxExF)
H S
W %o X C: number of input channels
L

H,W: size of the input feature maps
M: number of weight filters

| K: weight kernel size

J E,F: size of the output feature maps
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Convolution

(B, C, W, H)
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Convolution

Input Feature
maps

(B, C, W, H)
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Filters

Output Feature
maps

(B, M, E, F)
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Convolution

(B, C, W, H)
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Computational Cost: Standard Convolution
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Number of MACs: BxMxKxKxCxExF

Storage cost:
32x(MxCxKxK+BxCxHxW+BxMxE xF)

B: batch size

C: number of input channels

H,W: size of the input feature maps
M: number of weight filters

K: weight kernel size

E,F: size of the output feature maps

We need to iterate over seven dimensions:
B, M, C, E, F, K(kernel width), K (kernel height)
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Computational Dataflow for CNN

forb=1to B
form=TtoM
forc=1to C X— mi?ta;:;irer ——Z=XY
forw=1to E ]
forh=1toF
forki=1to K Yy
fork2=1to K

out[b][m][e][f] += in[b][c][e+ki-(K+1)/2][f+k2-(K+1)/2] * filter[m][c][ki] [k2];
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This simple loop nest can be transformed in numerous ways to capture different reuse
patterns of the activations and weights and to map the computation to a hardware
accelerator implementation.

A CNN'’s dataflow defines how the loops are ordered, partitioned, and parallelized

We can use the scaler machine to compute the results of CNN using this for loop .



Computational Dataflow for CNN

Scalar _ Xx__ .| Vector .2=XT
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Matrix
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How to Convert to Matrix Multiplication?

IFmaps
12
= 12
i 15 -
9: 18 8 Traversal § . .
Bl o (e, | € e Astandard Convolutional operation
AN =R 8 can be converted to 2D matrix
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How to Convert to Matrix Multiplication?

Input feature map
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Weight filter
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How to Convert to Matrix Multiplication?

Filter
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Convolution:
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Topics

Hardware accelerator: Overview
Convolutional operation conversion
Systolic array

Convolutional Neural Network System
Popular accelerator design
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Hardware Architectures for DNN Processing

Major building blocks:

Accumulator

. Processing = e Processing engine
00— | engine --S e e Accumulator
Reg oo 3% e Regfile
File === S = e Special function unit
Control bits v ,—T 7—‘ - e Memory subsystem
Memory controller o Weight SRAM
| | o Data SRAM
DRAM Weight Data « o DRAM
SRAM SRAM
1
Read/Write
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Computing Paradigms
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Memory
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Spatial architecture can achieve great reuse of the extracted content,

leading to a reduced memory access cost.

23



Double Buffering

Systolic Systolic
Array Array
Mem: Mem:2 Mem: Mem:2
DRAM DRAM
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Double buffering in hardware
design is a technique used to
improve the efficiency and
performance of data processing,
especially in systems that
require smooth and continuous
data transfer.

The idea is to overlap the data
production and consumption
processes to avoid delays.
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Systolic Array (Weight Stationary Version)

e Kung and Leiserson, "Systolic Arrays for VLSI," 1978 and Kung, "Why systolic architectures?' 1982

e 2D grid of multiplier-accumulators (MACs) for matrix multiplication
e Used by Google TPU for deep learning (2017), etc

Systolic cell
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B

TPU (Google)
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Systolic Cell

v

Y |z=wx+y| £
V=X

E
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Takes data (x and y) as input

w stays in the systolic cell
Performs a multiply-accumulate
operation
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Systolic Cell
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Z=WX+y
V=X

[ x=4



Systolic Cell

y=2 Z
|z =W+ 2—
——w is stored in

T x=4 the MAC
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Systolic Cell

NYU SAI LAB

2=64+2
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Systolic Cell

[ v=4

7=26
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Multiplier Accumulator
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Bit-serial Multiplier-Accumulator (MAC)
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Visualizing Systolic Array Multiplication

Weight Data  Result 0—|2:040 Fos| 3:0+0 Fs{-4-0+0 |»
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Visualizing Systolic Array Multiplication

Weight Data  Result 0—-2:0+0 —> 3:0+0 —>{-4:0+0 |>
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Visualizing Systolic Array Multiplication
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Visualizing Systolic Array Multiplication
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Visualizing Systolic Array Multiplication
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Visualizing Systolic Array Multiplication

Weight Data  Result 0—-2:0+0 [—> 3:0+0 —>-4:2+9 = 1,6
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Topics
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Hardware accelerator: Overview
Convolutional operation conversion
Systolic array

Convolutional Neural Network System
Popular accelerator design

Chen, Yu-Hsin, et al. "Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks."
IEEE journal of solid-state circuits 52.1 (2016): 127-138.
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Computational Scheduling

Conv [a]
3x3x384

Conv [b]
3x3x768

.............................. 0Oms SRS IR TR s w yms
0,
Gg.?Ps Tpfc;fs/s 33"@ Conv [a] Conv[d]| 1.8 10.8 69%
............................. 012ms [Conv[al|(Convc]|(Conv[d]] 24 98 629 \3X3x384 3x3x768 | GFLOPs TFLOPs/s  Util.
5 B8 wooL \Sxaxa8d |\ D304 )| xI08 ) GROPs TRORSIS VI . Lo s 017 ms
GFL'OPS TFLéPs/s Util.
.............................. 0.24 ms i irinsnaerooams: €NV [b]| [Conviel 18 11 71%
Conv [c] 0.6 55 35% 65 M GaR 3x3x768 | | 3x3x384 GFLOPs TFLOPs/s Ut
3x3x384 GFLOPs TFLOPs/s Util. GFLOPs TFLOPS/s Um_o ................................................. 0.33ms

.............................. 0.35ms

................................. 0.37 .
Conv[d] 12 93 59% e Avg. util: 70%

Concat
oo
3x3x768 |GFLOPs TFLOPs/s Ut Concat Avg. util: 62% 1920 22%1)
............................ 0.48 ms 1920 (14%1)

Concat Avg. util: 48%
1920

(1) Sequential Schedule (2) Greedy Schedule (3) Our Schedule (I0S)

e The branchy CNN can be scheduling and computed in a much higher efficiency.
e Two convolutional operations can be combined to achieve less memory cost.
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Ding, Yaoyao, et al. "los: Inter-operator scheduler for cnn acceleration." Proceedings of Machine Learning and Systems
3 (2021): 167-180.
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Memory Efficient Neural Network Training

Forward pass Backward pass Normalized Number of Parameters
Storage during DNN Training
Memory Memory Memory
———————————— 1 [ ittt
| ' Lo e ! ' : :
“““ TOutput TTT777 pOutput T 4 Output ResNet-18 x -\L‘Vetl.gh:.
Hl Aclivation
|G |t
I ResNet-50
Layer O Layer O
| (o) (o] V6616 i
| Input |

e The memory footprint grows proportional with the layer depth.
e On top of this, small edge devices typically have limited on-chip storage, leading to frequent and
costly accesses to off-chip memories.

NYU SAI LAB

Zhang, Sai Qian, et al. "CAMEL: Co-Designing Al Models and eDRAMs for Efficient On-Device Learning." 2024 IEEE
International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.
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Memory Efficient Neural Network Training

Residual Architecture Reversible Architecture
) yiy y2
] *’@ Forward pass:
= y2 = F1(x1) + x2
y1 = F2(y2) + x1
F # | Backward Pass:
F X1 =y1 - F2(y2)
x2 = y2 - F1(x1)
X X1 X2

e Areversible residual network (RevNet) is a variant of the canonical residual
neural network (ResNet).

U 8 I L B Zhang, Sai Qian, et al. "CAMEL: Co-Designing Al Models and eDRAMSs for Efficient On-Device Learning." 2024 IEEE
N Y A A International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.




Memory Efficient Neural Network Training

Architecture

p Output iy o y2
Linear i
1 :'I
Reversible] / F-
Block :
1 / ‘
[
Reversible F1
Block |
f Input X1 X2

Operations

Forward pass:
y2 = F1(x1) + x2
y1 = F2(y2) + X1

Backward Pass:
X1 = y1 - F2(y2)
x2 = y2 - F1(x1)

1. Recompute
the input

y

X

2. Compute
input gradient

Jout

Reversible Reversible
Block Block

gin

3. Compute weight
gradient and update

Jout
»‘ Reversible
< Block
Weight

update

X

e The reversible architecture enables the backward pass computations to be performed without the need
to store the input activations.
e Given the output y, the input activations are first recomputed. Afterwards, the input and weight gradients
are computed with standard backward pass operations.
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Zhang, Sai Qian, et al. "CAMEL: Co-Designing Al Models and eDRAMSs for Efficient On-Device Learning." 2024 IEEE
International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.
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Memory Efficient Neural Network Training

Output . . . .
i e This approach in turn imposes higher compute
y Branch DNN demands
Concatenate| [ .
Reversible . . . .
= Backbone DNN e We propose to judiciously train a subset of the
£ g . model parameters to minimize training.
Reversible — Pretrained
@ . DNN Block 4‘y
- e The backbone DNN is frozen during the
F1 = [ Pretrained Q backward pass of the DNN.
DNN Block
Tl ke | — Fs o
Input : i e The normalization layers are removed from the
branch DNN to facilitate the training process.
Duplex DNN
U ‘8 I L Zhang, Sai Qian, et al. "CAMEL: Co-Designing Al Models and eDRAMs for Efficient On-Device Learning." 2024 IEEE
NY A AB International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.
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Memory Efficient Neural Network Training

Backward pass

Forward pass
y1l Y21 Y3 gu 9 @@ m@
(m) ()

— 0@
k- \ ./

&) @)
X1, X2, @

We carefully schedule the computations of DUDNN during both forward and backward
passes to achieve optimal system performance.
We propose the optimal compute pattern to minimize memory usage and lifetime.

Zhang, Sai Qian, et al. "CAMEL: Co-Designing Al Models and eDRAMSs for Efficient On-Device Learning." 2024 IEEE
International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.
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Topics

Hardware accelerator: Overview
Convolutional operation conversion
Systolic array

Convolutional Neural Network System
Popular accelerator design
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Column Combining

e Unimportant (i.e., small weights) are setto 0
e However, it is hard to leverage these zero weights to reduce the hardware cost

Dense Sparse Weight matrix Systolic array
Weight Matrix Weight Matrix [3P{o 10}
| t

T
T
T
B

1
N

1
N

Pruning =0

=

W =

co &~
A wo
> o

A

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic

NYU SAI LAB array implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International 46

Conference on Architectural Support for Programming Languages and Operating Systems. 2019.



Column Combining

Weight Matrix Systolic Array

32 64
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Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic
NYU SAI LAB array implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International 47

Conference on Architectural Support for Programming Languages and Operating Systems. 2019.



Column Combining

Standard Systolic Array After
Systolic Array Column Combining X_ X A A
3 4 - I |
S -
1 1 i ) Column T ] -
| 1 |—>| 2 |—>| 0 |—>| 4 |—> Combining‘ y 6 y MAC S
1 1 1 t ——) in | ~ out
|$H1H3H0P | i T\\ W=-6
(a0 |-[a]-[6 >~ -keptdueto X_ X R /_Iﬂ
I S . larger magnitude 3 ™M \\\
X1 X2 X3 X4

e Column combining can greatly increase the utilization of the systolic array.
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Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic
array implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International 48
Conference on Architectural Support for Programming Languages and Operating Systems. 2019.



Column Combining

Standard Systolic Array After Standard Systolic Array After
Systolic Array Column-wise Pruning Systolic Array Column Combining
Ero-EE ., II+EI Ero-EEr .,
| 1 |_,| 2 |_,| 0 |_,| 4 |_, Combining 2 0 | 1 |_,| 2 |_,| 0 |_,| 4 |_, Combining
) ) ) t ) ) ) t Y
Ic;H;H?H?P I?HzH?H?P
Ca-Co - Ca-Co -
t t t 1 t t t 1
X1 X2 X3 X4 X2 X3 X1 X2 X3 X4

e Compared with column-wise Pruning (filterwise pruning), Column Combining allows for
a much more flexible pruning pattern

e We can al

NYU SAI LAB

so apply Column Combining pruning on the input of each layer.

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic
array implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International 49

Conference on Architectural Support for Programming Languages and Operating Systems. 2019.



Column-Combining Pruning
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pruning Combine | pruning | Combine
J \ J \ J
Y Y Y
Pruning round i Fine-tuning Pruning round i+1

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic
array implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating Systems. 2019.
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Column-Combining Pruning: Row Permutation

Combine Combine Combine Combine

e o At
_

Weights
at Layer i —

Twisted

‘_f} ﬁ_‘Muxed

Input of il Input of |©|— O [N | —
layer i 3|3 layeri [S|S SI8 (S

Small weights B Large weights

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic
NYU SAI LAB array implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International 51

Conference on Architectural Support for Programming Languages and Operating Systems. 2019.



Hardware Implementation

§ ~Y04
—Yo3
Systolic g Relu Yo,
] AXI to Reg 0 ol . Yor
- app [ e Quant.
JTAG to . ‘AXI RTL
Hest | ™ w [ " lbus |WeightLoader || Shift | J
| 1 shift 1 Shift [} =N
0 i utput Data Control_, [ Memo ve Control [ Memo —rt | g
B el T i = e ] ==
Read/Write T ‘ﬁ_u%yg . {—ﬂ%‘g? :§ =
N _ 1 Shift
e Xilinx VC707 Evaluation Board
e Total hardware available: Lookup Table (303600), Flip-Flops (607200), BRAM (1030, each 36Kb)
e More than 15K lines of verilog code
e 128 by 64 systolic array

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic
NYU SAI LAB array implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International 52
Conference on Architectural Support for Programming Languages and Operating Systems. 2019.




Accuracy Evaluation Results

ResNet-20: a=8,=20,y=0.5

S » 700K Accuracy
‘gso_ P SOOK,§ Original DNN 72.08%
< Lo
§751 [ P ok & Structured Filterwise 69.0%
8o, E P 300K & Pruning
= [ , =
éﬁs' . — 5= Column Combining 71.81%
601 ~ | |  jm—————————— lj00K
0 25 50 75 100 125 150 175
Epochs VGG-19 on ImageNet
ResNet-20 on CIFAR-10 (87.5% sparsity)
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Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic
array implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating Systems. 2019.
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Prior Work: Efficient DNN Data Types

e Filter weights and activations can be quantized with low precision to accelerate the
inference and reduce the model size.

7 Uniform 7

) 3 quantization 3
DNN weights [3.9]1.2 -1 1 -1
-1 1.4 -1l 1|1

e Low-precision quantization leads to large accuracy loss.

Li, Fengfu, Bo Zhang, and Bin Liu. "Ternary weight networks."

NYU SAI LAB Rastegari, Mohammad, et al. "Xnor-net: Imagenet classification using binary convolutional neural networks."

Zhou, Aojun, et al. "Incremental network quantization.”



Problem on Low Precision Uniform Quantization

W, =
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2

3

8-bit uniform quantization 4-bit uniform quantization

=

7

272625242322 2120

(ONCNCNONONONCN]
O0001100
O0000101
10001001

272625242322 2120

4-bit

O000000X
O000YX00
OO0000Y0X
1000Y00%

=

Kung, Hsiang-Tsung, Bradley McDanel, and Sai Qian Zhang. "Term quantization: Furthering quantization at run time."
SC20: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2020.

W, =0
W, =0
W, =0
W, =128

Low-precision quantization leads to significant quantization error.
Both weights and input activation are highly biased in values.

55



Representing Values in Power-of-two Terms

e An integer value can be represented as a summation of power-of-two term(s).

=2 =

# of Terms
Frequency
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8-bit uniform quantization

27 26 25 2% 23 22 21 2°
=1 ©000000[1 20
=12 =y (0000 11]e 0 23+22
=5 00000101 22420
=137 1]o 0 ol1]e ol1] 27+23+2°
40 .

N
o

alllin.

o

0123456 7
# of Weight Terms

W,X,=12x2=(23+22) x2*
=23x21+22x2!

Most quantized weight and data values
can be represented with 2 or 3

power-of-two terms.
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Term Quantization

w 22222120 W

2 > O 010 2

5 _0 10 & 4
Budget = 2

X 23 222t 20 X

9 > 100 % 8

3 0O 01 % 2

>[21 2]
H Sty iz -
>[2321]

4-bit uniform quantization

2726252%2322212°
00000001
0001100
0000101
10001001
W, =0
W, =0
W, =0
W, =128

TQ with a budget =4
272625242322212°

OO0O0000O01

=R © O
© OO
Ol o NO)
ol oNO)
R oK
(OO NO)
[l I ©)

2 =
Il
Olo ~ K

N
n

-

N

W, =0
W, =136

e \We can control the term-level computations by setting a group term budget.
e For a group of values, we rank and remove the small terms based on this budget.
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Hybrid Encoding for Shortened Expressions (HESE)

e To minimize the number of power-of-two terms in the binary input, we propose Hybrid Encoding
for Shortened Expression (HESE)
e HESE offers:
o Signed power-of-two expression with minimum length
o  Much less term-pair multiplications

_ _ 31 =24+23+22+2'+20  5terms
Binary expression

27 = 24423421420 4 terms
1 = 2520 2 terms

HESE < 22
27 = 25-22.20 3 terms

NYU SAI LAB Kung, Hsiang-Tsung, Bradley McDanel, and Sai Qian Zhang. "Term quantization: Furthering quantization at run time."
SC20: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2020.
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Quantization Error Analysis

Layerwise Quantization Error in ResNet-18
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ResNet-18 Layer
We represent a group of 8 weights with 14 terms, each weight only requires 1.75 terms on average
e Term Quantization (TQ) introduces a small amount of quantization error over 8-bit uniform
quantization (UQ)
e TQ achieves a much lower quantization error than 7-bit and 6-bit uniform quantization
e TQ with 1.75 term per value achieves a similar quantization error as 5-bit UQ
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Multiplier-accumulator Design

e \We propose the term MAC (tMAC) for the efficient implementation of TQ.
e AtMAC processes all term-pair multiplications across a group of weight and data values.
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e Each term is represented by their corresponding exponent (2-3 bits).
e The term accumulation can be implemented using half adders.
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Multi-resolution DNN Inference with T(Q
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e DNN is expected to run at different resolution to achieve a good trade-off
between hardware cost and accuracy.
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Multi-resolution DNN Inference with T(Q
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e A meta multi-resolution DNN model which can work under different term budget needs to be
trained.
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Multi-resolution DNN Training
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e We develop a multi-resolution training scheme to jointly train multiple DNN models under different
term budgets.

e Instead of jointly train all the sub-models together, we apply the knowledge distillation framework
to jointly train two sub-models per iteration.
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Multi-resolution DNN System
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e The energy consumption will scale with the term budgets of the weight and data.

U ‘8 I L B Zhang, Sai Qian, et al. "Training for multi-resolution inference using reusable quantization terms." Proceedings of the 26th
N Y A A ACM International Conference on Architectural Support for Programming Languages and Operating Systems. 2021.




Evaluation: Accuracy Performance

Cost of Term Sharing (ResNet-18) 9 FPGA Emergy EfMicienty
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e The multi-resolution DNN incurs 0.4%-3.8% degradation compared to the original
floating-point DNN (70.2%).
e The energy efficiency grows (3.25x on average), as term budget reduces from 60 to 16.

U 8 I L B Zhang, Sai Qian, et al. "Training for multi-resolution inference using reusable quantization terms." Proceedings of the 26th
N Y A A ACM International Conference on Architectural Support for Programming Languages and Operating Systems. 2021.




Diannao
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. > Control Processor (CP) e The first popular end-to-end
' . TR e DNN (CNN) accelerator.
veu2 Bneu3 e Diannao is synthesized with
. \‘ ; 65nm using Synopsys tools,
y R il achieving a throughput of 482
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II GOP/s.

" e NFU consists of three stages:
o Multiplier units

o Adder tree

o Nonlinear unit
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Eyeriss
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e Eyeriss optimizes for the energy efficiency of the entire system, including the accelerator
chip and off-chip DRAM, for various CNN shapes by reconfiguring the architecture.

e The core clock domain consists of a spatial array of 168 PEs organized as a 12 x 14
rectangle, a 108-kB GLB, an RLC CODEC, and an ReLU module.
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Data Reuse for Memory Access Reduction
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e Reuse and accumulation of data within a PE set reduce accesses to the GLB
and DRAM, saving data movement energy cost.
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Rerun-length encoding

Input: 0.0, 12,0,0,0, 0, 53, 0,0, 22, ...
Run Level Run Level Run Level Term
Output (64b): [2| 12 ] 4] 53 |2 22 |0
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e RLC is used for compressing the input activation.
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Input: [1, 0, 3] — [1, 3] (input) [0, 2] (offset)
Cnvlutin Weight: [1, 3, 5]
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e Cnvlutin is a value-based approach to
hardware acceleration that eliminates most
of these ineffectual operations, improving
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