
Lecture 11:
AI Accelerator Introduction and

CNN Accelerators

Notes
● First round of team meeting on Dec 1 and Dec 2.
● Extra-credit quiz today.

Recap
● Federated Learning
● Machine Learning Compiler
● Machine Learning System

4

Topics
● Hardware accelerator: Overview
● Convolutional operation conversion
● Systolic array
● Convolutional Neural Network System
● Popular accelerator design

5

AI Accelerator
● The AI accelerator can execute part of the machine code that is related to the AI workload.

Weight
SRAM

A
ctivation
S

R
A

M

D
R

A
M

Register
file

CPU Compute
core

NoC

CPU

DRAM

AI
accelerator

…

AI Accelerator

GPU

6

AI Accelerator

Weight
SRAM

A
ctivation
S

R
A

M

D
R

A
M

Register
file

CPU
Compute

core

AI Accelerator

Matrix MAC S
pecial

 Function
 unit

Vector MAC

● The compute core consists of Multiply and accumulator (MAC) engine for 2D matrix
multiplication.

● It also contains vector multiplier MAC as well as special function unit.

7

AI Accelerator
Weight
SRAM

A
ctivation
S

R
A

M

D
R

A
M

Compute
core

AI Accelerator

X00W00

X00
0

W00

X00 X01

X10 X11

W00 W01

W10 W11
✕

W00X00+W01X10= W00X01+W01X11

W10X00+W11X10 W10X01+W11X11
= Y00 Y01

Y10 Y11

W01

W10

W11

X01

X10

X11

W00X00

8

Memory Access Reduction
Weight
SRAM

A
ctivation
S

R
A

M

D
R

A
M

Compute
core

AI AcceleratorX10

W01

W00X00

Y00

W01

W10

W11

X01

X10

X11

W00X00

Weight
SRAM

A
ctivation
S

R
A

M

D
R

A
M

Compute
core

AI Accelerator

W01

W10

W11

X11

X01

X10

X11

W01
Y00

0

W00X00

W01X11

● The computation and memory access pattern can be changed to minimize
the computational cost without impacting the results.

9

Topics
● Hardware accelerator: Overview
● Convolutional operation conversion
● Systolic array
● Convolutional Neural Network System
● Popular accelerator design

10

Convolutional Layers

● Core building block of a CNN, it is also the most computational intensive layer.

Convolution

 =

 *

 = *

 *
Filter Output feature mapInput feature maps

=

 =

 =

 + +

Step 1 Step 2

H

W

C

11

Convolution

...

...

......

Filters

Output Feature
maps

H

W

C

E

F

M

Input Feature
maps

Conv
...

...
Conv

Conv

M

● Number of MACs: M✕K✕K✕C✕E✕F
● Storage cost:

32✕(M✕C✕K✕K+C✕H✕W+M✕E✕F)

C: number of input channels
H,W: size of the input feature maps
M: number of weight filters
K: weight kernel size
E,F: size of the output feature maps

K
K

C

12

Convolution

...

...

...... Filters

Output Feature
maps

Input Feature
maps

...
...

...

...

...

...
...

...
(B, C, W, H) (B, M, E, F)

13

Convolution

...

...

Filters

Output Feature
maps

Input Feature
maps

...
...

...

...

...

...
...

...

... ...

(B, C, W, H) (B, M, E, F)

14

Convolution

...

...

Filters

Output Feature
maps

Input Feature
maps

...
...

...

...

...
...

...

... ...

...
(B, C, W, H) (B, M, E, F)

15

Computational Cost: Standard Convolution

● Number of MACs: B✕M✕K✕K✕C✕E✕F
● Storage cost:

32✕(M✕C✕K✕K+B✕C✕H✕W+B✕M✕E✕F)

B: batch size
C: number of input channels
H,W: size of the input feature maps
M: number of weight filters
K: weight kernel size
E,F: size of the output feature maps

K
K

● We need to iterate over seven dimensions:
○ B, M, C, E, F, K(kernel width), K (kernel height)

16

Computational Dataflow for CNN
for b = 1 to B
 for m = 1 to M
 for c = 1 to C
 for w = 1 to E
 for h = 1 to F
 for k1 = 1 to K
 for k2 = 1 to K
 out[b][m][e][f] += in[b][c][e+k1-(K+1)/2][f+k2-(K+1)/2] * filter[m][c][k1][k2];

● This simple loop nest can be transformed in numerous ways to capture different reuse
patterns of the activations and weights and to map the computation to a hardware
accelerator implementation.

● A CNN’s dataflow defines how the loops are ordered, partitioned, and parallelized
● We can use the scaler machine to compute the results of CNN using this for loop

Scalar
multiplierx

y

z=xy

17

Computational Dataflow for CNN

Scalar
multiplierx

y

z=xy Vector
Multiplierx

y

z=xTy

Matrix
MultiplierX

Y

Z=XY

efficiency

Fl
ex

ib
ili

ty Scaler
machine

Matrix
machineTPU

CPU & GPU

18

How to Convert to Matrix Multiplication?

● A standard Convolutional operation
can be converted to 2D matrix
multiplication using Im2Col
operations.

19

How to Convert to Matrix Multiplication?

Weight
matrix

Input matrix
a00 a01 a02

a10 a11 a12

a20 a21 a22

a03

a13

a23

a30 a31 a32 a33

w00 w01 w02

w10 w11 w12

w20 w21 w22

a00 a01 a02 a10 a11 a12 a20 a21 a22

a01 a02 a03 a11 a12 a13 a21 a22 a23

a10 a11 a12 a20 a21 a22 a30 a31 a32

a11 a12 a13 a21 a22 a23 a31 a32 a33

w00

w01

w02

w10

w11

w12

w20

w21

w22

*

Input feature map
Weight filter

✕

20

How to Convert to Matrix Multiplication?

CK2

B
E

F

M

✕ = B
E

F

M
Input feature

maps
Output

feature maps
Filters

C
K

2

21

Topics
● Hardware accelerator: Overview
● Convolutional operation conversion
● Systolic array
● Convolutional Neural Network System
● Popular accelerator design

22

Hardware Architectures for DNN Processing

Processing
engine

Data
SRAM

S
pe

ci
al

Fu

nc
tio

n
U

ni
t

A
cc

um
ul

at
or

0

Read/Write

Reg
File

Control bits

Weight
SRAM

Memory controller

DRAM

Major building blocks:
● Processing engine
● Accumulator
● Reg file
● Special function unit
● Memory subsystem

○ Weight SRAM
○ Data SRAM
○ DRAM

23

Computing Paradigms

Memory
W1

Memory

W1

A1

Y1

Memory
W2

● Spatial architecture can achieve great reuse of the extracted content,
leading to a reduced memory access cost.

24

Double Buffering

Mem1 Mem2

Systolic
Array

DRAM

Mem1 Mem2

Systolic
Array

DRAM

● Double buffering in hardware
design is a technique used to
improve the efficiency and
performance of data processing,
especially in systems that
require smooth and continuous
data transfer.

● The idea is to overlap the data
production and consumption
processes to avoid delays.

25

Systolic Array (Weight Stationary Version)
● Kung and Leiserson, "Systolic Arrays for VLSI," 1978 and Kung, "Why systolic architectures?' 1982
● 2D grid of multiplier-accumulators (MACs) for matrix multiplication
● Used by Google TPU for deep learning (2017), etc

2D Systolic Array

x

v

z = w·x + y
v = x

z

Systolic cell

y

TPU (Google)

26

Systolic Cell

● Takes data (x and y) as input
● w stays in the systolic cell
● Performs a multiply-accumulate

operation

v

z = w·x + y
v = x

zy

x

27

Systolic Cell

v

z = w·x + y
v = x

zy=2

x=4

28

Systolic Cell

v

z = w·4 + 2
zy=2

x=4
w is stored in
the MAC

29

Systolic Cell

v

z = 6·4 + 2
zy=2

x=4

30

Systolic Cell

v=4

z=26
z = 6·4 + 2

31

Multiplier Accumulator
Xi

W0W1

Yo
Yi

W2W3

Bit-serial Multiplier-Accumulator (MAC)

W4W5W6W7

0
FACi Co

A B

S
FACi Co

A B

S
FACi Co

A B

S
FACi Co

A B

S
FACi Co

A B

S
FACi Co

A B

S
FACi Co

A B

S
FACi Co

A B

S

FACi Co
A B

S

FACi Co
B

S

1Control1Enable
Reset

A

32

Visualizing Systolic Array Multiplication

 2 -1
 3-2

 1
 0

 0
 3

 0
 6

-1
 1

Data
Matrix

Weight
Matrix

Result
Matrix

 1
-4

 -2 2

1
0 0

3 -2
2

 2 0 + 0

-2 0 + 0 3 0 + 0

-1 0 + 0 1 0 + 0

-4 0 + 0

0

0

0 0 0

0

0

0

0

Weights in red are preloaded
into the systolic array Skewed

input

33

Visualizing Systolic Array Multiplication

 2 -1
 3-2

 1
 0

 0
 3

 0
 6

-1
 1

Data
Matrix

Weight
Matrix

Result
Matrix

 1
-4

 -2 2

0 0
3 -2

2

 2 1 + 0

-2 0 + 0 3 0 + 0

-1 0 + 0 1 0 + 0

-4 0 + 0

0

0

1 0 0

0

2

0

0

Weights in red are preloaded
into the systolic array

34

Visualizing Systolic Array Multiplication

 2 -1
 3-2

 1
 0

 0
 3

 0
 6

-1
 1

Data
Matrix

Weight
Matrix

Result
Matrix

 1
-4

 -2 2

3 -2
2

 2 0 + 0

-2 1 + 0 3 0 + 0

-1 0 + 2 1 0 + 0

-4 0 + 0

0

0

0 0 0

-2

0

0

2

Weights in red are preloaded
into the systolic array

35

Visualizing Systolic Array Multiplication

 2 -1
 3-2

 1
 0

 0
 3

 0
 6

-1
 1

Data
Matrix

Weight
Matrix

Result
Matrix

 1
-4

 -2 2

2

 2 0 + 0

-2 0 + 0 3 0 + -2

-1 3 + 0 1 -2 + 2

-4 0 + 0

0

0

0

0 3 -2

0

0

-2

-3

Weights in red are preloaded
into the systolic array

36

Visualizing Systolic Array Multiplication

 2 -1
 3-2

 1
 0

 0
 3

 0
 6

-1
 1

Data
Matrix

Weight
Matrix

Result
Matrix

 1
-4

 -2 2 2 0 + 0

-2 0 + 0 3 3 + 0

-1 0 + 0 1 2 + -3

-4 -2 + -2

0

0 6

-1, 0

0 0 2

0

0

9

0

Weights in red are preloaded
into the systolic array

37

Visualizing Systolic Array Multiplication

 2 -1
 3-2

 1
 0

 0
 3

 0
 6

-1
 1

Data
Matrix

Weight
Matrix

Result
Matrix

 1
-4

 -2 2 2 0 + 0

-2 0 + 0 3 0 + 0

-1 0 + 0 1 0 + 0

-4 2 + 9

0

0 1, 6

 , -1, 0

0 0 0

0

0

0

0

Weights in red are preloaded
into the systolic array

38

Topics

Chen, Yu-Hsin, et al. "Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks."
IEEE journal of solid-state circuits 52.1 (2016): 127-138.

● Hardware accelerator: Overview
● Convolutional operation conversion
● Systolic array
● Convolutional Neural Network System
● Popular accelerator design

39

Computational Scheduling

Ding, Yaoyao, et al. "Ios: Inter-operator scheduler for cnn acceleration." Proceedings of Machine Learning and Systems
3 (2021): 167-180.

● The branchy CNN can be scheduling and computed in a much higher efficiency.
● Two convolutional operations can be combined to achieve less memory cost.

40

Memory Efficient Neural Network Training

● The memory footprint grows proportional with the layer depth.
● On top of this, small edge devices typically have limited on-chip storage, leading to frequent and

costly accesses to off-chip memories.

Zhang, Sai Qian, et al. "CAMEL: Co-Designing AI Models and eDRAMs for Efficient On-Device Learning." 2024 IEEE
International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.

Output

Memory

Layer 0

Input

Memory

Layer 1Layer 1

Output

Layer 0

Memory

Layer 1

Layer 0

Memory

Layer 1

Layer 0

Output Output

Forward pass Backward pass

1x

Normalized Number of Parameters
Storage during DNN Training

1.67x

6.6x

13.4x

ResNet-18

ResNet-34

ResNet-50

VGG-16

Activation
Weight

41

x2

y2

+

x1

+

y1

F2

F1

 Residual Architecture

+

x

y

F

 Reversible Architecture

● A reversible residual network (RevNet) is a variant of the canonical residual
neural network (ResNet).

Forward pass:
y2 = F1(x1) + x2

y1 = F2(y2) + x1

Backward Pass:
x1 = y1 - F2(y2)
x2 = y2 - F1(x1)

Zhang, Sai Qian, et al. "CAMEL: Co-Designing AI Models and eDRAMs for Efficient On-Device Learning." 2024 IEEE
International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.

Memory Efficient Neural Network Training

42

Reversible
Block

Weight
update

1. Recompute
the input

y

x

Reversible
Block

gout

gin

Reversible
Block

gout

2. Compute
input gradient

3. Compute weight
gradient and update

x

x2

y2

+

x1

+

y1

Forward pass:
y2 = F1(x1) + x2

y1 = F2(y2) + x1

Backward Pass:
x1 = y1 - F2(y2)
x2 = y2 - F1(x1)

Architecture
OperationsOutput

Reversible
Block

Reversible
Block

Linear

…

Input

F2

F1

● The reversible architecture enables the backward pass computations to be performed without the need
to store the input activations.

● Given the output y, the input activations are first recomputed. Afterwards, the input and weight gradients
are computed with standard backward pass operations.

Zhang, Sai Qian, et al. "CAMEL: Co-Designing AI Models and eDRAMs for Efficient On-Device Learning." 2024 IEEE
International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.

Memory Efficient Neural Network Training

43

● This approach in turn imposes higher compute
demands.

● We propose to judiciously train a subset of the
model parameters to minimize training.

● The backbone DNN is frozen during the
backward pass of the DNN.

● The normalization layers are removed from the
branch DNN to facilitate the training process.

Duplex DNN

Backbone DNN

Branch DNN

Zhang, Sai Qian, et al. "CAMEL: Co-Designing AI Models and eDRAMs for Efficient On-Device Learning." 2024 IEEE
International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.

Memory Efficient Neural Network Training

44

Memory Efficient Neural Network Training

Zhang, Sai Qian, et al. "CAMEL: Co-Designing AI Models and eDRAMs for Efficient On-Device Learning." 2024 IEEE
International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.

x1,l

x2,l

y1,l

+

x1,l

+

F2

F1
G

y2,l y3,l

P
ooling

x2,l

y1,l y2,l y3,l

g1,l

+

g2,l

+

sl

ml
q1,l

x1,l

s1,l

ml

q2,l

g2,l y2,lg1,l y1,l

Forward pass Backward pass

● We carefully schedule the computations of DuDNN during both forward and backward
passes to achieve optimal system performance.

● We propose the optimal compute pattern to minimize memory usage and lifetime.

45

Topics
● Hardware accelerator: Overview
● Convolutional operation conversion
● Systolic array
● Convolutional Neural Network System
● Popular accelerator design

46

Column Combining
● Unimportant (i.e., small weights) are set to 0
● However, it is hard to leverage these zero weights to reduce the hardware cost

Pruning

Dense
Weight Matrix

Sparse
Weight Matrix

0

-3

0

0

0

-2

1

4

-1

0

-64

0

-4

03

x1 x2 x3 x4

-3

0
0
4

0
-2
1
4

0

-64

0
-4
03

W =

Weight matrix Systolic array

 4-1

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic
array implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating Systems. 2019.

47

Column Combining
 Sparse

Weight Matrix

Column Combining
8x reduction in size

 Packed Format in
Systolic Array

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic
array implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating Systems. 2019.

48

Column Combining

x1 x2 x3 x4

-3

-2

1

4

-1

-4

3

-6

x1 x2 x3 x4

Systolic Array After
Column Combining

Standard
Systolic Array

Column
Combining

-3

0

4

0

-2

1

0

0

0

-64

-1

-4

03

 1

● Column combining can greatly increase the utilization of the systolic array.

MAC
W=-6

-6yin

x3 x4

x3 x4

yout

-6 kept due to
larger magnitude

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic
array implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating Systems. 2019.

49

Column Combining

x1 x2 x3 x4

Systolic Array After
Column-wise Pruning

Standard
Systolic Array

Column
Combining

-3

0

4

0

-2

1

0

0

0

-64

-1

-4

03

 1

● Compared with column-wise Pruning (filterwise pruning), Column Combining allows for
a much more flexible pruning pattern

● We can also apply Column Combining pruning on the input of each layer.

x1 x2 x3 x4

-3

-2

1

4

-1

-4

3

-6

x1 x2 x3 x4

Systolic Array After
Column Combining

Standard
Systolic Array

Column
Combining

-3

0

4

0

-2

1

0

0

0

-64

-1

-4

03

 1

x2 x3

0

-2

1

0

0

0

4

3

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic
array implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating Systems. 2019.

50

Column-Combining Pruning
pruning Combine

Pruning round i Fine-tuning

Combinepruning

Pruning round i+1

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic
array implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating Systems. 2019.

51

Column-Combining Pruning: Row Permutation

Small weights Large weights

Muxed

C
ol

 0
C

ol
 1

C
ol

 2
C

ol
 3

C
ol

 0
C

ol
 1

C
ol

 2
C

ol
 3Input of

layer i

Weights
at Layer i

Combine Combine

Weights
at Layer i

Combine Combine

Twisted

C
ol

 0
C

ol
 1

C
ol

 2
C

ol
 3Input of

layer i C
ol

 0
C

ol
 2

C
ol

 1
C

ol
 3

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic
array implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating Systems. 2019.

52

Hardware Implementation

● Xilinx VC707 Evaluation Board
● Total hardware available: Lookup Table (303600), Flip-Flops (607200), BRAM (1030, each 36Kb)
● More than 15K lines of verilog code
● 128 by 64 systolic array

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic
array implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating Systems. 2019.

53

Accuracy Evaluation Results
Accuracy

Original DNN 72.08%

Structured Filterwise
Pruning

69.0%

Column Combining 71.81%

ResNet-20 on CIFAR-10
VGG-19 on ImageNet

(87.5% sparsity)

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic
array implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating Systems. 2019.

54

Prior Work: Efficient DNN Data Types
● Filter weights and activations can be quantized with low precision to accelerate the

inference and reduce the model size.

Uniform
quantization

DNN weights
8.5 3 1

3.9 -1

8.1 1.40.6-1

1.2 4.6

0.2 9 3 1

4 -1

8 11-1

1 5

0

● Low-precision quantization leads to large accuracy loss.

Li, Fengfu, Bo Zhang, and Bin Liu. "Ternary weight networks."
Rastegari, Mohammad, et al. "Xnor-net: Imagenet classification using binary convolutional neural networks."
Zhou, Aojun, et al. "Incremental network quantization.”

55

Problem on Low Precision Uniform Quantization

24 21 2023 22

0 1
1 0 0
1 0 1
0 0 1

0 0
0
0
0

0
1
0
1

W1 =
1

W2 = 12
W3 =

5
W4 = 137

8-bit uniform quantization
252627

0
0
0
0

0
0
0
0

0
0
0
1

● Low-precision quantization leads to significant quantization error.
● Both weights and input activation are highly biased in values.

0 1
1 0 0
1 0 1
0 0 1

0 0
0
0
0

0
1
0
1

0
0
0
0

0
0
0
0

0
0
0
1

4-bit
W’1 = 0
W’2 = 0
W’3 = 0
W’4 = 128

4-bit uniform quantization
24 21 2023 22252627

Kung, Hsiang-Tsung, Bradley McDanel, and Sai Qian Zhang. "Term quantization: Furthering quantization at run time."
SC20: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2020.

56

Representing Values in Power-of-two Terms
● An integer value can be represented as a summation of power-of-two term(s).

24 21 2023 22

0 1
1 0 0
1 0 1
0 0 1

0 0

0
0
0

0

1
0
1

W1 = 1

W2 = 12

W3 = 5

W4 = 137

8-bit uniform quantization
252627

0

0
0
0

0

0
0
0

0

0
0
1

20

22+20

27+23+20

23+22 W2X2=12x2=(2
3+22)x21

 =23x21+22x21

● Most quantized weight and data values
can be represented with 2 or 3
power-of-two terms.

Kung, Hsiang-Tsung, Bradley McDanel, and Sai Qian Zhang. "Term quantization: Furthering quantization at run time."
SC20: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2020.

57

Term Quantization
21 2022

1 0
1 0 1
0

W
2
5

W’
2
4

21 2022

0 1
1 1

X
9
3

X’
8
2

23

0
0

0
0

0
1
23

[21,22]

[23,21]

21x23+22x2
1

dot product

● We can control the term-level computations by setting a group term budget.
● For a group of values, we rank and remove the small terms based on this budget.

Budget = 2

4-bit uniform quantization
24 21202322

0 1
1 0 0
1 0 1
0 0 1

0 0
0
0
0

0
1
0
1

252627
0
0
0
0

0
0
0
0

0
0
0
1

24 21202322

1
1
0

0 0
0
0
0

0
1
0
1

252627
0
0
0
0

0
0
0
0

0
0
0
1

0 1
0 0
0 1
0 1

TQ with a budget = 4

W’1 = 0
W’2 = 0
W’3 = 0
W’4 = 128

W’1 = 0
W’2 = 12
W’3 = 0
W’4 = 136

Kung, Hsiang-Tsung, Bradley McDanel, and Sai Qian Zhang. "Term quantization: Furthering quantization at run time."
SC20: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2020.

58

Hybrid Encoding for Shortened Expressions (HESE)
● To minimize the number of power-of-two terms in the binary input, we propose Hybrid Encoding

for Shortened Expression (HESE)
● HESE offers:

○ Signed power-of-two expression with minimum length
○ Much less term-pair multiplications

27 = 24+23+21+20
Binary expression

4 terms

27 = 25-22-20
HESE

3 terms

31 = 24+23+22+21+20 5 terms

31 = 25-20 2 terms

Kung, Hsiang-Tsung, Bradley McDanel, and Sai Qian Zhang. "Term quantization: Furthering quantization at run time."
SC20: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2020.

59

Quantization Error Analysis

● We represent a group of 8 weights with 14 terms, each weight only requires 1.75 terms on average
● Term Quantization (TQ) introduces a small amount of quantization error over 8-bit uniform

quantization (UQ)
● TQ achieves a much lower quantization error than 7-bit and 6-bit uniform quantization
● TQ with 1.75 term per value achieves a similar quantization error as 5-bit UQ

Kung, Hsiang-Tsung, Bradley McDanel, and Sai Qian Zhang. "Term quantization: Furthering quantization at run time."
SC20: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2020.

60

Multiplier-accumulator Design
● We propose the term MAC (tMAC) for the efficient implementation of TQ.
● A tMAC processes all term-pair multiplications across a group of weight and data values.

Weight exponent queue +

Data exponent queues

4 43 22 11 0
+++++ + + +Sign

+3
0 tMAC

YoutTerm
accumulator

Yin

+
+2

1 +
+4

0 +
+1

0 +

 0 2 3 0
Weight index queue

 1 1 3 0

Systolic Array of tMAC

tMAC tMAC

tMAC tMAC

tMAC tMAC

tMAC

tMAC

tMAC

...

...

...

...

...

● Each term is represented by their corresponding exponent (2-3 bits).
● The term accumulation can be implemented using half adders.

Kung, Hsiang-Tsung, Bradley McDanel, and Sai Qian Zhang. "Term quantization: Furthering quantization at run time."
SC20: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2020.

61

Multi-resolution DNN Inference with TQ

● DNN is expected to run at different resolution to achieve a good trade-off
between hardware cost and accuracy.

Acc: 70%

A
cc

ur
ac

y

Hardware cost

Acc: 67%Acc: 70%

Acc: 67%

Zhang, Sai Qian, et al. "Training for multi-resolution inference using reusable quantization terms." Proceedings of the 26th
ACM International Conference on Architectural Support for Programming Languages and Operating Systems. 2021.

62

Multi-resolution DNN Inference with TQ

Sub-model 1

16/24/24/24/25W1 =
21 2023 2224

W2 =
W3 =
W4 =

1
0

0

0 1
1

1
0
0

1
1
1

1
0

0
0 1

1
1

0

Sub-model 2 Sub-model 5
...

0/0/4/4/4
16/16/20/22/23
0/8/12/12/12

...
budget=2 budget=4 budget=10

Multi-resolution DNN model

● A meta multi-resolution DNN model which can work under different term budget needs to be
trained.

Zhang, Sai Qian, et al. "Training for multi-resolution inference using reusable quantization terms." Proceedings of the 26th
ACM International Conference on Architectural Support for Programming Languages and Operating Systems. 2021.

63

● We develop a multi-resolution training scheme to jointly train multiple DNN models under different
term budgets.

● Instead of jointly train all the sub-models together, we apply the knowledge distillation framework
to jointly train two sub-models per iteration.

Multi-resolution DNN Training

Zhang, Sai Qian, et al. "Training for multi-resolution inference using reusable quantization terms." Proceedings of the 26th
ACM International Conference on Architectural Support for Programming Languages and Operating Systems. 2021.

64

Multi-resolution DNN System

MAC
Data terms

21 21 22 22 23 24 24

MAC
22 23 24 2421 22 22 23 24 24

20
Sorted termsWeight group

21 6 17 11

processed in
 cycles

24 21 2023 22

0 1
1 1 0
0 0 1
0 1 1

1 0
0
1
0

1
0
0
1

20 21

Data terms

processed in
 cycles

● The energy consumption will scale with the term budgets of the weight and data.

Zhang, Sai Qian, et al. "Training for multi-resolution inference using reusable quantization terms." Proceedings of the 26th
ACM International Conference on Architectural Support for Programming Languages and Operating Systems. 2021.

65

Evaluation: Accuracy Performance

● The multi-resolution DNN incurs 0.4%-3.8% degradation compared to the original
floating-point DNN (70.2%).

● The energy efficiency grows (3.25x on average), as term budget reduces from 60 to 16.

Zhang, Sai Qian, et al. "Training for multi-resolution inference using reusable quantization terms." Proceedings of the 26th
ACM International Conference on Architectural Support for Programming Languages and Operating Systems. 2021.

66

Diannao

Chen, Tianshi, et al. "Diannao: A small-footprint high-throughput accelerator for ubiquitous machine-learning." ACM
SIGARCH Computer Architecture News 42.1 (2014): 269-284.

● The first popular end-to-end
DNN (CNN) accelerator.

● Diannao is synthesized with
65nm using Synopsys tools,
achieving a throughput of 482
GOP/s.

● NFU consists of three stages:
○ Multiplier units
○ Adder tree
○ Nonlinear unit

67

Eyeriss

● Eyeriss optimizes for the energy efficiency of the entire system, including the accelerator
chip and off-chip DRAM, for various CNN shapes by reconfiguring the architecture.

● The core clock domain consists of a spatial array of 168 PEs organized as a 12 × 14
rectangle, a 108-kB GLB, an RLC CODEC, and an ReLU module.

68

Data Reuse for Memory Access Reduction

● Reuse and accumulation of data within a PE set reduce accesses to the GLB
and DRAM, saving data movement energy cost.

69

Rerun-length encoding

● RLC is used for compressing the input activation.

70

Cnvlutin

Albericio, Jorge, et al. "Cnvlutin: Ineffectual-neuron-free deep neural network computing." ACM SIGARCH Computer
Architecture News 44.3 (2016): 1-13.

● A large fraction of the computations
performed by CNNs are intrinsically
ineffectual as they involve a multiplication
where one of the inputs is zero.

● Cnvlutin is a value-based approach to
hardware acceleration that eliminates most
of these ineffectual operations, improving
performance and energy over a
state-of-the-art accelerator with no accuracy
loss.

Input: [1, 0, 3] → [1, 3] (input) [0, 2] (offset)
Weight: [1, 3, 5]

