
Lecture 11: 
AI Accelerator Introduction and 

CNN Accelerators



Notes
● First round of team meeting on Dec 1 and Dec 2.
● Extra-credit quiz today.



Recap
● Federated Learning
● Machine Learning Compiler 
● Machine Learning System
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Topics
● Hardware accelerator: Overview
● Convolutional operation conversion
● Systolic array
● Convolutional Neural Network System
● Popular accelerator design
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AI Accelerator
● The AI accelerator can execute part of the machine code that is related to the AI workload.
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AI Accelerator
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● The compute core consists of Multiply and accumulator (MAC) engine for 2D matrix 
multiplication.

● It also contains vector multiplier MAC as well as special function unit.
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AI Accelerator
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Memory Access Reduction
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● The computation and memory access pattern can be changed to minimize 
the computational cost without impacting the results.
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Topics
● Hardware accelerator: Overview
● Convolutional operation conversion
● Systolic array
● Convolutional Neural Network System
● Popular accelerator design
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Convolutional Layers

● Core building block of a CNN, it is also the most computational intensive layer.
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Convolution
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● Number of MACs: M✕K✕K✕C✕E✕F
● Storage cost:

32✕(M✕C✕K✕K+C✕H✕W+M✕E✕F)

C: number of input channels
H,W: size of the input feature maps
M: number of weight filters
K: weight kernel size
E,F: size of the output feature maps

K
K

C
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Convolution

...

...

Filters

Output Feature 
maps

Input Feature 
maps

...
...

...

...

...
...

...

... ...

...
(B, C, W, H) (B, M, E, F)



15

Computational Cost: Standard Convolution

● Number of MACs: B✕M✕K✕K✕C✕E✕F
● Storage cost:

32✕(M✕C✕K✕K+B✕C✕H✕W+B✕M✕E✕F)

B: batch size
C: number of input channels
H,W: size of the input feature maps
M: number of weight filters
K: weight kernel size
E,F: size of the output feature maps

K
K

● We need to iterate over seven dimensions:
○ B, M, C, E, F, K(kernel width), K (kernel height)
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Computational Dataflow for CNN
for b = 1 to B 
    for m = 1 to M 
        for c = 1 to C 
            for w = 1 to E 
                for h = 1 to F 
                    for k1 = 1 to K 
                        for k2 = 1 to K 
                            out[b][m][e][f] += in[b][c][e+k1-(K+1)/2][f+k2-(K+1)/2] * filter[m][c][k1][k2]; 

● This simple loop nest can be transformed in numerous ways to capture different reuse 
patterns of the activations and weights and to map the computation to a hardware 
accelerator implementation.

● A CNN’s dataflow defines how the loops are ordered, partitioned, and parallelized
● We can use the scaler machine to compute the results of CNN using this for loop

Scalar 
multiplierx

y

z=xy
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Computational Dataflow for CNN
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How to Convert to Matrix Multiplication?

● A standard Convolutional operation 
can be converted to 2D matrix 
multiplication using Im2Col 
operations.
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How to Convert to Matrix Multiplication?
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How to Convert to Matrix Multiplication?
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Topics
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Hardware Architectures for DNN Processing
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Major building blocks:
● Processing engine
● Accumulator
● Reg file
● Special function unit
● Memory subsystem

○ Weight SRAM
○ Data SRAM
○ DRAM
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Computing Paradigms

Memory
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● Spatial architecture can achieve great reuse of the extracted content, 
leading to a reduced memory access cost.
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Double Buffering

Mem1 Mem2

Systolic 
Array

DRAM

Mem1 Mem2

Systolic 
Array

DRAM

● Double buffering in hardware 
design is a technique used to 
improve the efficiency and 
performance of data processing, 
especially in systems that 
require smooth and continuous 
data transfer.

● The idea is to overlap the data 
production and consumption 
processes to avoid delays.
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Systolic Array (Weight Stationary Version)
● Kung and Leiserson, "Systolic Arrays for VLSI," 1978 and Kung, "Why systolic architectures?' 1982
● 2D grid of multiplier-accumulators (MACs) for matrix multiplication
● Used by Google TPU for deep learning (2017), etc

2D Systolic Array
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y

TPU (Google)
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Systolic Cell

● Takes data (x and y) as input
● w stays in the systolic cell
● Performs a multiply-accumulate 

operation

v
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x
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Systolic Cell
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Systolic Cell
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Systolic Cell
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Systolic Cell

v=4

z=26
z = 6·4 + 2
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Multiplier Accumulator
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Visualizing Systolic Array Multiplication
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Visualizing Systolic Array Multiplication
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Visualizing Systolic Array Multiplication
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Visualizing Systolic Array Multiplication
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Visualizing Systolic Array Multiplication
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Visualizing Systolic Array Multiplication
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Topics

Chen, Yu-Hsin, et al. "Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks." 
IEEE journal of solid-state circuits 52.1 (2016): 127-138.

● Hardware accelerator: Overview
● Convolutional operation conversion
● Systolic array
● Convolutional Neural Network System
● Popular accelerator design
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Computational Scheduling

Ding, Yaoyao, et al. "Ios: Inter-operator scheduler for cnn acceleration." Proceedings of Machine Learning and Systems 
3 (2021): 167-180.

● The branchy CNN can be scheduling and computed in a much higher efficiency.
● Two convolutional operations can be combined to achieve less memory cost.
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Memory Efficient Neural Network Training

● The memory footprint grows proportional with the layer depth. 
● On top of this, small edge devices typically have limited on-chip storage, leading to frequent and 

costly accesses to off-chip memories.

Zhang, Sai Qian, et al. "CAMEL: Co-Designing AI Models and eDRAMs for Efficient On-Device Learning." 2024 IEEE 
International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.
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 Reversible Architecture

● A reversible residual network (RevNet) is a variant of the canonical residual 
neural network (ResNet). 

Forward pass:
y2 = F1(x1) + x2

y1 = F2(y2) + x1

Backward Pass:
x1 = y1 - F2(y2)
x2 = y2 - F1(x1)

Zhang, Sai Qian, et al. "CAMEL: Co-Designing AI Models and eDRAMs for Efficient On-Device Learning." 2024 IEEE 
International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.

Memory Efficient Neural Network Training
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● The reversible architecture enables the backward pass computations to be performed without the need 
to store the input activations.

● Given the output y, the input activations are first recomputed. Afterwards, the input and weight gradients 
are computed with standard backward pass operations.

Zhang, Sai Qian, et al. "CAMEL: Co-Designing AI Models and eDRAMs for Efficient On-Device Learning." 2024 IEEE 
International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.

Memory Efficient Neural Network Training
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● This approach in turn imposes higher compute 
demands.

● We propose to judiciously train a subset of the 
model parameters to minimize training.

● The backbone DNN is frozen during the 
backward pass of the DNN.

● The normalization layers are removed from the 
branch DNN to facilitate the training process.

Duplex DNN

Backbone DNN

Branch DNN

Zhang, Sai Qian, et al. "CAMEL: Co-Designing AI Models and eDRAMs for Efficient On-Device Learning." 2024 IEEE 
International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.

Memory Efficient Neural Network Training
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Memory Efficient Neural Network Training

Zhang, Sai Qian, et al. "CAMEL: Co-Designing AI Models and eDRAMs for Efficient On-Device Learning." 2024 IEEE 
International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.
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● We carefully schedule the computations of DuDNN during both forward and backward 
passes to achieve optimal system performance.

● We propose the optimal compute pattern to minimize memory usage and lifetime.
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Topics
● Hardware accelerator: Overview
● Convolutional operation conversion
● Systolic array
● Convolutional Neural Network System
● Popular accelerator design
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Column Combining
● Unimportant (i.e., small weights) are set to 0
● However, it is hard to leverage these zero weights to reduce the hardware cost
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Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic 
array implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International 
Conference on Architectural Support for Programming Languages and Operating Systems. 2019.
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Column Combining
 Sparse

Weight Matrix

Column Combining
8x reduction in size

 Packed Format in 
Systolic Array

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic 
array implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International 
Conference on Architectural Support for Programming Languages and Operating Systems. 2019.
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Column Combining
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● Column combining can greatly increase the utilization of the systolic array.

MAC
W=-6

-6yin

x3 x4
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yout

-6 kept due to 
larger magnitude

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic 
array implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International 
Conference on Architectural Support for Programming Languages and Operating Systems. 2019.
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Column Combining
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● Compared with column-wise Pruning (filterwise pruning), Column Combining allows for 
a much more flexible pruning pattern

● We can also apply Column Combining pruning on the input of each layer.
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Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic 
array implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International 
Conference on Architectural Support for Programming Languages and Operating Systems. 2019.
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Column-Combining Pruning
pruning Combine

Pruning round i Fine-tuning

Combinepruning

Pruning round i+1

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic 
array implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International 
Conference on Architectural Support for Programming Languages and Operating Systems. 2019.



51

Column-Combining Pruning: Row Permutation
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Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic 
array implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International 
Conference on Architectural Support for Programming Languages and Operating Systems. 2019.
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Hardware Implementation

● Xilinx VC707 Evaluation Board
● Total hardware available: Lookup Table (303600), Flip-Flops (607200), BRAM (1030, each 36Kb)
● More than 15K lines of verilog code
● 128 by 64 systolic array

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic 
array implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International 
Conference on Architectural Support for Programming Languages and Operating Systems. 2019.
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Accuracy Evaluation Results
Accuracy

Original DNN 72.08%

Structured Filterwise 
Pruning

69.0%

Column Combining 71.81%

ResNet-20 on CIFAR-10
VGG-19 on ImageNet 

(87.5% sparsity)

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic 
array implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International 
Conference on Architectural Support for Programming Languages and Operating Systems. 2019.
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Prior Work: Efficient DNN Data Types
● Filter weights and activations can be quantized with low precision to accelerate the 

inference and reduce the model size.

Uniform
quantization

DNN weights
8.5 3  1

3.9 -1

8.1 1.40.6-1

1.2 4.6

0.2 9 3  1

4 -1

8 11-1

1 5

0

● Low-precision quantization leads to large accuracy loss.

Li, Fengfu, Bo Zhang, and Bin Liu. "Ternary weight networks." 
Rastegari, Mohammad, et al. "Xnor-net: Imagenet classification using binary convolutional neural networks."
Zhou, Aojun, et al. "Incremental network quantization.”
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Problem on Low Precision Uniform Quantization
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● Low-precision quantization leads to significant quantization error.
● Both weights and input activation are highly biased in values.
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Kung, Hsiang-Tsung, Bradley McDanel, and Sai Qian Zhang. "Term quantization: Furthering quantization at run time." 
SC20: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2020.
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Representing Values in Power-of-two Terms
● An integer value can be represented as a summation of power-of-two term(s).
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● Most quantized weight and data values 
can be represented with 2 or 3 
power-of-two terms.

Kung, Hsiang-Tsung, Bradley McDanel, and Sai Qian Zhang. "Term quantization: Furthering quantization at run time." 
SC20: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2020.
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Term Quantization
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● We can control the term-level computations by setting a group term budget.
● For a group of values, we rank and remove the small terms based on this budget.
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Kung, Hsiang-Tsung, Bradley McDanel, and Sai Qian Zhang. "Term quantization: Furthering quantization at run time." 
SC20: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2020.
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Hybrid Encoding for Shortened Expressions (HESE)
● To minimize the number of power-of-two terms in the binary input, we propose Hybrid Encoding 

for Shortened Expression (HESE)
● HESE offers:

○ Signed power-of-two expression with minimum length
○ Much less term-pair multiplications

27 = 24+23+21+20
Binary expression

4 terms

27 = 25-22-20
HESE

3 terms

31 = 24+23+22+21+20 5 terms

31 = 25-20 2 terms

Kung, Hsiang-Tsung, Bradley McDanel, and Sai Qian Zhang. "Term quantization: Furthering quantization at run time." 
SC20: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2020.
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Quantization Error Analysis

● We represent a group of 8 weights with 14 terms, each weight only requires 1.75 terms on average
● Term Quantization (TQ) introduces a small amount of quantization error over 8-bit uniform 

quantization (UQ)
● TQ achieves a much lower quantization error than 7-bit and 6-bit uniform quantization
● TQ with 1.75 term per value achieves a similar quantization error as 5-bit UQ

Kung, Hsiang-Tsung, Bradley McDanel, and Sai Qian Zhang. "Term quantization: Furthering quantization at run time." 
SC20: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2020.
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Multiplier-accumulator Design
● We propose the term MAC (tMAC) for the efficient implementation of TQ.
● A tMAC processes all term-pair multiplications across a group of weight and data values.

Weight exponent queue +

Data exponent queues

4 43 22 11 0
+++++ + + +Sign
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0 tMAC
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1 +
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Systolic Array of tMAC

tMAC tMAC

tMAC tMAC

tMAC tMAC
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...

...

...

... ... ...
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● Each term is represented by their corresponding exponent (2-3 bits).
● The term accumulation can be implemented using half adders.

Kung, Hsiang-Tsung, Bradley McDanel, and Sai Qian Zhang. "Term quantization: Furthering quantization at run time." 
SC20: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2020.
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Multi-resolution DNN Inference with TQ

● DNN is expected to run at different resolution to achieve a good trade-off 
between hardware cost and accuracy. 

Acc: 70%

A
cc

ur
ac

y

Hardware cost

Acc: 67%Acc: 70%

Acc: 67%

Zhang, Sai Qian, et al. "Training for multi-resolution inference using reusable quantization terms." Proceedings of the 26th 
ACM International Conference on Architectural Support for Programming Languages and Operating Systems. 2021.
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Multi-resolution DNN Inference with TQ

Sub-model 1
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W2 =
W3 =
W4 =

1
0

0

0 1
1

1
0
0

1
1
1

1
0

0
0 1

1
1

0

Sub-model 2 Sub-model 5
...

0/0/4/4/4
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...
budget=2 budget=4 budget=10

Multi-resolution DNN model

● A meta multi-resolution DNN model which can work under different term budget needs to be 
trained.

Zhang, Sai Qian, et al. "Training for multi-resolution inference using reusable quantization terms." Proceedings of the 26th 
ACM International Conference on Architectural Support for Programming Languages and Operating Systems. 2021.
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● We develop a multi-resolution training scheme to jointly train multiple DNN models under different 
term budgets.

● Instead of jointly train all the sub-models together, we apply the knowledge distillation framework 
to jointly train two sub-models per iteration.

Multi-resolution DNN Training

Zhang, Sai Qian, et al. "Training for multi-resolution inference using reusable quantization terms." Proceedings of the 26th 
ACM International Conference on Architectural Support for Programming Languages and Operating Systems. 2021.
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Multi-resolution DNN System
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● The energy consumption will scale with the term budgets of the weight and data.

Zhang, Sai Qian, et al. "Training for multi-resolution inference using reusable quantization terms." Proceedings of the 26th 
ACM International Conference on Architectural Support for Programming Languages and Operating Systems. 2021.
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Evaluation: Accuracy Performance

● The multi-resolution DNN incurs 0.4%-3.8% degradation compared to the original 
floating-point DNN (70.2%).

● The energy efficiency grows (3.25x on average), as term budget reduces from 60 to 16.

Zhang, Sai Qian, et al. "Training for multi-resolution inference using reusable quantization terms." Proceedings of the 26th 
ACM International Conference on Architectural Support for Programming Languages and Operating Systems. 2021.
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Diannao

Chen, Tianshi, et al. "Diannao: A small-footprint high-throughput accelerator for ubiquitous machine-learning." ACM 
SIGARCH Computer Architecture News 42.1 (2014): 269-284.

● The first popular end-to-end 
DNN (CNN) accelerator.

● Diannao is synthesized with 
65nm using Synopsys tools, 
achieving a throughput of 482 
GOP/s.

● NFU consists of three stages:
○ Multiplier units
○ Adder tree
○ Nonlinear unit
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Eyeriss

● Eyeriss optimizes for the energy efficiency of the entire system, including the accelerator 
chip and off-chip DRAM, for various CNN shapes by reconfiguring the architecture.

● The core clock domain consists of a spatial array of 168 PEs organized as a 12 × 14 
rectangle, a 108-kB GLB, an RLC CODEC, and an ReLU module.
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Data Reuse for Memory Access Reduction

● Reuse and accumulation of data within a PE set reduce accesses to the GLB 
and DRAM, saving data movement energy cost.
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Rerun-length encoding

● RLC is used for compressing the input activation.
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Cnvlutin

Albericio, Jorge, et al. "Cnvlutin: Ineffectual-neuron-free deep neural network computing." ACM SIGARCH Computer 
Architecture News 44.3 (2016): 1-13.

● A large fraction of the computations 
performed by CNNs are intrinsically 
ineffectual as they involve a multiplication 
where one of the inputs is zero.

● Cnvlutin is a value-based approach to 
hardware acceleration that eliminates most 
of these ineffectual operations, improving 
performance and energy over a 
state-of-the-art accelerator with no accuracy 
loss.

Input: [1, 0, 3] → [1, 3] (input) [0, 2] (offset)
Weight: [1, 3, 5] 


